Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T03:56:44.742Z Has data issue: false hasContentIssue false

Chapter 6 - Schizophrenia, Microbiota and Nutrition

Published online by Cambridge University Press:  17 August 2023

Ted Dinan
Affiliation:
Emeritus Professor, University College Cork, Ireland
Get access

Summary

Schizophrenia is a complex heterogeneous neurodevelopmental disorder involving the intricate interplay of genetic susceptibilities and the accumulation of prenatal and postnatal environmental stressors. At the interface between the individual and the environment, the diverse microbial ecosystem in the gut (microbiota) plays an important role in the regulation of homeostasis, particularly immune, metabolic and endocrine pathways. Pre-clinical studies show that the signalling pathways of the microbiome–gut–brain (MGB) axis influence brain development and function, including modulation of stress sensitivity, social interaction and cognitive function. Human studies in infants indicate associations between the gut microbiota and components of cognition and behaviour. Preliminary clinical studies demonstrate that schizophrenia is associated with altered gut microbiota signatures compared to healthy controls. Faecal microbiota transplantation studies from people with schizophrenia induce changes in brain neurochemistry and behaviour, which suggests a physiologically relevant role. Microbial-based interventions in schizophrenia are at an early stage of development, but a deeper understanding of the overlapping and complementary interaction between the MGB axis and diet and exercise and their relationship to other lifestyle factors could open avenues to modify susceptibility to, or exacerbation of, components of schizophrenia. This chapter will review the MGB axis and its interaction with diet, exercise, stress and antipsychotics in the hope that this will provide mental health professionals with an understanding of the MGB axis as an additional modifiable system that could be harnessed to improve health outcomes in schizophrenia.

Type
Chapter
Information
Nutritional Psychiatry
A Primer for Clinicians
, pp. 101 - 120
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hjorthøj, C., Stürup, A. E., McGrath, J. J. and Nordentoft, M., 2017. Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry, 4(4), pp. 295301.CrossRefGoogle ScholarPubMed
Perry, B. I., Stochl, J., Upthegrove, R., et al., 2021. Longitudinal trends in childhood insulin levels and body mass index and associations with risks of psychosis and depression in young adults. JAMA Psychiatry, 78(4), pp. 416–25.CrossRefGoogle ScholarPubMed
Madrid-Gambin, F., Föcking, M., Sabherwal, S., et al., 2019. Integrated lipidomics and proteomics point to early blood-based changes in childhood preceding later development of psychotic experiences: evidence from the Avon longitudinal study of parents and children. Biological Psychiatry, 86(1), pp. 2534.Google Scholar
Millerm, B. J. and Goldsmith, D. R., 2019. Inflammatory biomarkers in schizophrenia: implications for heterogeneity and neurobiology. Biomarkers in Neuropsychiatry, 1, p. 100006.CrossRefGoogle Scholar
Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., et al., 2019. The microbiota-gut-brain axis. Physiological Reviews, 99(4), pp. 18772013.Google Scholar
Sudo, N., Chida, Y., Aiba, Y., et al., 2004. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology, 558(pt. 1), pp. 263–75.Google Scholar
Desbonnet, L., Clarke, G., Traplin, A., et al., 2015. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain, Behavior, and Immunity, 48, pp. 165–73.Google Scholar
Wu, W.-L., Adame, M. D., Liou, C.-W., et al., 2021. Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 595(7867), pp. 409–14.CrossRefGoogle ScholarPubMed
Buffington, S. A., Di Prisco, G. V., Auchtung, T. A., et al., 2016. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell, 165(7), pp. 1762–75.Google Scholar
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. and Cryan, J. F., 2014. Microbiota is essential for social development in the mouse. Molecular Psychiatry, 19(2), pp. 146–8.Google Scholar
Cowan, C. S., Callaghan, B. L. and Richardson, R., 2016. The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Translational Psychiatry, 6(5), p. e823.CrossRefGoogle ScholarPubMed
Yap, C. X., Henders, A. K., Alvares, G. A., et al., 2021. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell, 184(24), p. 5916-31.e17.Google Scholar
Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G. and Dinan, T. G., 2021. The role of the gut microbiome in the development of schizophrenia. Schizophrenia Research, 234, pp. 423.CrossRefGoogle ScholarPubMed
Nikolova, V. L., Smith, M. R. B., Hall, L. J., et al., 2021. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry, 78(12), pp. 1343–54.CrossRefGoogle ScholarPubMed
Valles-Colomer, M., Falony, G., Darzi, Y., et al., 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 4(4), pp. 623–32.CrossRefGoogle ScholarPubMed
McGuinness, A. J., Davis, J. A., Dawson, S. L., et al., 2022. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Molecular Psychiatry, 27, pp. 1920–35.CrossRefGoogle ScholarPubMed
Nguyen, T. T., Kosciolek, T., Eyler, L. T., Knight, R. and Jeste, D. V., 2018. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 99, pp. 5061.CrossRefGoogle ScholarPubMed
Borkent, J., Ioannou, M., Laman, J. D., Haarman, B. C. M. and Sommer, I. E. C., 2022. Role of the gut microbiome in three major psychiatric disorders. Psychological Medicine, 52(7), pp. 1222–42.Google Scholar
Okubo, R., Koga, M., Katsumata, N., et al., 2019. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. Journal of Affective Disorders, 245, pp. 377–85.Google Scholar
Ghaderi, A., Banafshe, H. R., Mirhosseini, N., et al., 2019. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry, 19(1), p. 77.Google Scholar
Dickerson, F. B., Stallings, C., Origoni, A., et al., 2014. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Primary Care Companion for CNS Disorders, 16(1).Google ScholarPubMed
Zeevi, D., Korem, T., Zmora, N., et al., 2015. Personalized nutrition by prediction of glycemic responses. Cell, 163(5), pp. 1079–94.CrossRefGoogle ScholarPubMed
Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., et al., 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 535(7612), pp. 376–81.Google Scholar
Schüssler-Fiorenza Rose, S. M., Contrepois, K., Moneghetti, K. J., et al., 2019. A longitudinal big data approach for precision health. Nature Medicine, 25(5), pp. 792804.CrossRefGoogle ScholarPubMed
Fu, J., Bonder, M. J., Cenit, M. C., et al., 2015. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circulation Research, 117(9), pp. 817–24.CrossRefGoogle ScholarPubMed
Zheng, J., Lin, Z., Ko, C.-Y, et al., 2022. Analysis of gut microbiota in patients with exacerbated symptoms of schizophrenia following therapy with amisulpride: a pilot study. Behavioural Neurology, 2022, p. 4262094.CrossRefGoogle ScholarPubMed
Maier, L., Pruteanu, M., Kuhn, M., et al., 2018. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 555(7698), pp. 623–8.CrossRefGoogle ScholarPubMed
Nehme, H., Saulnier, P., Ramadan, A. A., et al., 2018. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. PLoS One, 13(1), p. e0189950.CrossRefGoogle ScholarPubMed
Liu, J., De Palma, G., Gorbovskaya, I., et al., 2021. The role of the microbiome-gut-brain axis in schizophrenia and clozapine-induced weight gain. Biological Psychiatry, 89(9), p. S342.CrossRefGoogle Scholar
Manchia, M., Fontana, A., Panebianco, C., et al., 2021. Involvement of gut microbiota in schizophrenia and treatment resistance to antipsychotics. Biomedicines, 314–318.Google Scholar
Zhernakova, A., Kurilshikov, A., Bonder, M. J., et al., 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 352(6285), pp. 565–9.CrossRefGoogle ScholarPubMed
Nash, A. K., Auchtung, T. A., Wong, M. C., et al., 2017. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 5(1), p. 153.Google Scholar
Shkoporov, A. N., Clooney, A. G., Sutton, T. D. S., et al., 2019. The human gut virome is highly diverse, stable, and individual specific. Cell Host & Microbe, 26(4), pp. 527–41.e5.CrossRefGoogle ScholarPubMed
David, L. A., Maurice, C. F., Carmody, R. N., et al., 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), pp. 559–63.Google Scholar
Clarke, S. F., Murphy, E. F., O’Sullivan, O., et al., 2014. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), pp. 1913–20.Google Scholar
Clarke, G., Sandhu, K. V., Griffin, B. T., 2019. Gut reactions: breaking down xenobiotic-microbiome interactions. Pharmacological Reviews, 71(2), pp. 198224.CrossRefGoogle ScholarPubMed
Rothschild, D, Weissbrod, O, Barkan, E, Kurilshikov, A, Korem, T, Zeevi, D, et al., 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), pp. 210–15.CrossRefGoogle ScholarPubMed
The Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486, p. 207.Google Scholar
Falony, G., Joossens, M., Vieira-Silva, S., et al., 2016. Population-level analysis of gut microbiome variation. Science (New York, NY), 352(6285), pp. 560–4.CrossRefGoogle ScholarPubMed
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. and Knight, R., 2012. Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), pp. 220–30.CrossRefGoogle ScholarPubMed
Gacesa, R., Kurilshikov, A., Vich Vila, A., et al., 2022. Environmental factors shaping the gut microbiome in a Dutch population. Nature, 604, pp. 732–9.Google Scholar
Roswall, J., Olsson, L. M., Kovatcheva-Datchary, P., et al., 2021. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host & Microbe, 29(5), pp. 765–76.e3.CrossRefGoogle ScholarPubMed
Chu, D. M., Ma, J., Prince, A. L., et al., 2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine, 23(3), pp. 314–26.Google Scholar
Timmerman, H. M., Rutten, N. B. M. M., Boekhorst, J., et al., 2017. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Scientific Reports, 7(1), p. 8327.CrossRefGoogle ScholarPubMed
Reyman, M., van Houten, M. A., Watson, R. L., et al., 2022. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nature Communications, 13(1), p. 893.CrossRefGoogle ScholarPubMed
Robertson, R. C., Manges, A. R., Finlay, B. B. and Prendergast, A. J., 2019. The human microbiome and child growth: first 1000 days and beyond. Trends in Microbiology, 27(2), pp. 131–47.Google Scholar
O’Donnell, M. P., Fox, B. W., Chao, P. H., Schroeder, F. C. and Sengupta, P., 2020. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature, 583(7816), pp. 415–20.CrossRefGoogle ScholarPubMed
Heijtz, R. D., Wang, S., Anuar, F., et al., 2011. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108(7), pp. 3047–52.Google Scholar
Aatsinki, A.-K., Lahti, L., Uusitupa, H.-M., et al., 2019. Gut microbiota composition is associated with temperament traits in infants. Brain, Behavior, and Immunity, 80, pp. 849–58.Google Scholar
Loughman, A., Ponsonby, A.-L., O’Hely, M., et al., 2020. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 52, p. 102640.Google Scholar
Kelsey, C. M., Prescott, S., McCulloch, J. A., et al., 2021. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain, Behavior, and Immunity, 91, pp. 472–86.CrossRefGoogle ScholarPubMed
Sordillo, J. E., Korrick, S., Laranjo, N., et al., 2019. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Network Open, 2(3), p. e190905.Google Scholar
Carlson, A. L., Xia, K., Azcarate-Peril, M. A., et al., 2018. Infant gut microbiome associated with cognitive development. Biological Psychiatry, 83(2), pp. 148–59.Google Scholar
Carlson, A. L., Xia, K., Azcarate-Peril, M. A., et al., 2021. Infant gut microbiome composition is associated with non-social fear behavior in a pilot study. Nature Communications, 12(1), p. 3294.CrossRefGoogle ScholarPubMed
Streit, F., Prandovszky, E., Send, T., et al., 2021. Microbiome profiles are associated with cognitive functioning in 45-month-old children. Brain, Behavior, and Immunity, 98, pp. 151–60.CrossRefGoogle ScholarPubMed
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), pp. 965–77.Google Scholar
Fülling, C., Dinan, T. G. and Cryan, J. F., 2019. Gut microbe to brain signaling: what happens in vagus …. Neuron, 101(6), pp. 9981002.Google Scholar
O’Riordan, K. J., Collins, M. K., Moloney, G. M., et al., 2022. Short chain fatty acids: microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 546, p. 111572.Google Scholar
Ye, L., Bae, M., Cassilly, C. D., et al., 2021. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe, 29(2), pp. 179–96.e9.CrossRefGoogle ScholarPubMed
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. and Cryan, J. F., 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, pp. 3248.Google Scholar
Henrick, B. M., Rodriguez, L., Lakshmikanth, T., et al., 2021. Bifidobacteria-mediated immune system imprinting early in life. Cell, 184(15), pp. 3884–98.e11.Google Scholar
Olm, M. R., Dahan, D., Carter, M. M., et al., 2022. Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science, 376(6598), pp. 1220–3.CrossRefGoogle ScholarPubMed
Maes, M., Kanchanatawan, B., Sirivichayakul, S. and Carvalho, A. F., 2019. In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotoxicity Research, 35(3), pp. 684–98.Google Scholar
Maes, M., Sirivichayakul, S., Kanchanatawan, B. and Vodjani, A., 2019. Upregulation of the intestinal paracellular pathway with breakdown of tight and adherens junctions in deficit schizophrenia. Molecular Neurobiology, 56(10), pp. 7056–73.CrossRefGoogle ScholarPubMed
Severance, E. G., Gressitt, K. L., Stallings, C. R., et al., 2013. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophrenia Research, 148(1–3), pp. 130–7.Google Scholar
Xu, R., Wu, B., Liang, J., et al., 2020. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain, Behavior, and Immunity, 85, pp. 120–7.Google Scholar
Marx, W., McGuinness, A. J., Rocks, T., et al., 2021. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Molecular Psychiatry, 26(8), pp. 4158–78.Google Scholar
Zhu, F., Guo, R., Wang, W., et al., 2020. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry, 25(11), pp. 2905–18.CrossRefGoogle ScholarPubMed
Hoban, A. E., Stilling, R. M., Ryan, F. J., et al., 2016. Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry, 6, p. e774.Google Scholar
Braniste, V., Al-Asmakh, M., Kowal, C., et al., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158.Google Scholar
Diaz Heijtz, R., Wang, S., Anuar, F., et al., 2011. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(21282636), pp. 3047–52.Google Scholar
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., et al., 2014. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 42, pp. 207–17.Google Scholar
Hoban, A. E., Moloney, R. D., Golubeva, A. V., et al., 2016. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience, 339, pp. 463–77.Google Scholar
Neufeld, K. M., Kang, N., Bienenstock, J. and Foster, J. A., 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 23(3), pp. 255–64, e119.CrossRefGoogle ScholarPubMed
Savignac, H. M., Corona, G., Mills, H., et al., 2013. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochemistry International, 63(8), pp. 756–64.CrossRefGoogle ScholarPubMed
Gronier, B., Savignac, H. M., Di Miceli, M., et al., 2018. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS®) ingestion. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 28(1), pp. 211–24.CrossRefGoogle ScholarPubMed
Bravo, J. A., Forsythe, P., Chew, M. V., et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), pp. 16050–5.Google Scholar
Janik, R., Thomason, L. A. M., Stanisz, A. M., et al., 2016. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage, 125, pp. 988–95.Google Scholar
Burokas, A., Arboleya, S., Moloney, R. D., et al., 2017. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), pp. 472–87.CrossRefGoogle ScholarPubMed
Zheng, P., Zeng, B., Liu, M., et al., 2019. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), p. eaau8317.Google Scholar
Dragioti, E., Radua, J., Solmi, M., et al., 2022. Global population attributable fraction of potentially modifiable risk factors for mental disorders: a meta-umbrella systematic review. Molecular Psychiatry, 27, pp. 3510–19.Google Scholar
Martland, N., Martland, R., Cullen, A. E. and Bhattacharyya, S., 2020. Are adult stressful life events associated with psychotic relapse? A systematic review of 23 studies. Psychological Medicine, 50(14), pp. 2302–16.CrossRefGoogle ScholarPubMed
Provensi, G., Schmidt, S. D., Boehme, M., et al., 2019. Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences, 116(19), pp. 9644–51.CrossRefGoogle ScholarPubMed
Johnson, K. V. A., 2020. Gut microbiome composition and diversity are related to human personality traits. Human Microbiome Journal, 15, p. 100069.Google Scholar
Zhu, F., Ju, Y., Wang, W., et al., 2020. Metagenome-wide association of gut microbiome features for schizophrenia. Nature Communications, 11(1), p. 1612.Google Scholar
Davey, K. J., O’Mahony, S. M., Schellekens, H., et al., 2012. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology, 221(1), pp. 155–69.CrossRefGoogle ScholarPubMed
Davey, K. J., Cotter, P. D., O’Sullivan, O., et al., 2013. Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Translational Psychiatry, 3, p. e309.CrossRefGoogle ScholarPubMed
Yuan, X., Zhang, P., Wang, Y., et al., 2018. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naive, normal weight patients with first episode schizophrenia. Schizophrenia Research, 201, pp. 299306.Google Scholar
Flowers, S. A., Evans, S. J., Ward, K. M., McInnis, M. G. and Ellingrod, V. L., 2017. Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. Pharmacotherapy, 37(3), pp. 261–7.Google Scholar
Flowers, S. A., Baxter, N. T., Ward, K. M., et al., 2019. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy, 39(2), pp. 161–70.CrossRefGoogle ScholarPubMed
Bahra, S. M., Weidemann, B. J., Castro, A. N., et al., 2015. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine, 2(11), pp. 1725–34.Google Scholar
Bahr, S. M., Tyler, B. C., Wooldridge, N., et al., 2015. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational Psychiatry, 5, p. e652.Google Scholar
Morgan, A. P., Crowley, J. J., Nonneman, R. J., et al., 2014. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. Plos One, 9(12), p. e115225.Google Scholar
Kao, A. C., Spitzer, S., Anthony, D. C., Lennox, B. and Burnet, P. W. J., 2018. Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Translational Psychiatry, 8(1), p. 66.Google Scholar
Minichino, A., Brondino, N., Solmi, M., et al., 2021. The gut-microbiome as a target for the treatment of schizophrenia: a systematic review and meta-analysis of randomised controlled trials of add-on strategies. Schizophrenia Research, 234, pp. 113.Google Scholar
Gaughran, F., Stringer, D., Wojewodka, G., et al., 2021. Effect of vitamin D supplementation on outcomes in people with early psychosis: the DFEND randomized clinical trial. JAMA Network Open, 4(12), pp. e2140858–e.CrossRefGoogle ScholarPubMed
Tomasik, J., Yolken, R. H., Bahn, S. and Dickerson, F. B., 2015. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomarker Insights, 10, pp. 4754.Google Scholar
Severance, E. G., Gressitt, K. L., Stallings, C. R., et al., 2017. Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain, Behavior, and Immunity, 62, pp. 41–5.Google Scholar
Dickerson, F., Adamos, M., Katsafanas, E., et al., 2018. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: a randomized controlled trial. Bipolar Disorders, 20(7), pp. 614–21.CrossRefGoogle ScholarPubMed
Kao, A. C., Safarikova, J., Marquardt, T., et al., 2019. Pro-cognitive effect of a prebiotic in psychosis: a double blind placebo controlled cross-over study. Schizophrenia Research, 208, pp. 460–1.CrossRefGoogle ScholarPubMed
Deakin, B., Suckling, J., Barnes, T. R. E., et al., 2018. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. The Lancet Psychiatry, 5(11), pp. 885–94.CrossRefGoogle ScholarPubMed
Kang, D.-W., Adams, J. B., Coleman, D. M., et al., 2019. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Scientific Reports, 9(1), p. 5821.Google Scholar
Stewart Campbell, A., Needham, B. D., Meyer, C. R., et al., 2022. Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nature Medicine, 28(3), pp. 528–34.CrossRefGoogle ScholarPubMed
Teasdale, S. B., Ward, P. B., Samaras, K., et al., 2019. Dietary intake of people with severe mental illness: systematic review and meta-analysis. British Journal of Psychiatry, 214(5), pp. 251–9.Google Scholar
Sarris, J., Ravindran, A., Yatham, L. N., et al., 2022. Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: the World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. The World Journal of Biological Psychiatry, 23(6), pp. 424–55.CrossRefGoogle Scholar
Á., Maguire, Mooney, C., Flynn, G., et al., 2021. No effect of coenzyme Q10 on cognitive function, psychological symptoms, and health-related outcomes in schizophrenia and schizoaffective disorder: results of a randomized, placebo-controlled trial. Journal of Clinical Psychopharmacology, 41(1), pp. 53–7.Google Scholar
McGorry, P. D., Nelson, B., Markulev, C., et al., 2017. Effect of ω-3 polyunsaturated fatty acids in young people at ultrahigh risk for psychotic disorders: the NEURAPRO randomized clinical trial. JAMA Psychiatry, 74(1), pp. 1927.CrossRefGoogle ScholarPubMed
Allott, K., McGorry, P. D., Yuen, H. P., et al., 2019. The vitamins in psychosis study: a randomized, double-blind, placebo-controlled trial of the effects of vitamins B(12), B(6), and folic acid on symptoms and neurocognition in first-episode psychosis. Biological Psychiatry, 86(1), pp. 3544.Google Scholar
Afshin, A., Sur, P. J., Fay, K. A., et al., 2019. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), pp. 1958–72.Google Scholar
Bhutta, Z. A., Das, J. K., Rizvi, A., et al., 2013. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet, 382(9890), pp. 452–77.Google Scholar
Deehan, E. C., Yang, C., Perez-Muñoz, M. E., et al., 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe, 27(3), pp. 389404.e6.Google Scholar
Dinan, T. G., Stanton, C., Long-Smith, C., et al., 2019. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clinical Nutrition, 38(5), pp. 19952001.Google Scholar
De Filippis, F., Pellegrini, N., Vannini, L., et al., 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), pp. 1812–21.Google Scholar
Vangay, P., Johnson, A. J., Ward, T. L., et al., 2018. US immigration Westernizes the human gut microbiome. Cell, 175(4), pp. 962–72.e10.Google Scholar
Sonnenburg, E. D. and Sonnenburg, J. L., 2019. The ancestral and industrialized gut microbiota and implications for human health. Nature Reviews Microbiology, 17(6), pp. 383–90.Google Scholar
Wastyk, H. C., Fragiadakis, G. K., Perelman, D., et al., 2021. Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), pp. 4137–53.e14.CrossRefGoogle ScholarPubMed
Zhu, C., Sawrey-Kubicek, L., Beals, E., et al., 2020. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research, 77, pp. 6272.CrossRefGoogle ScholarPubMed
Vassilopoulou, E., Efthymiou, D., Tsironis, V., et al., 2022. The benefits of the Mediterranean diet in first episode psychosis patients taking antipsychotics. Toxicology Reports, 9, pp. 120–5.Google Scholar
Kowalski, K., Bogudzińska, B., Stańczykiewicz, B., et al., 2022. The deficit schizophrenia subtype is associated with low adherence to the Mediterranean diet: findings from a case–control study. Journal of Clinical Medicine, 11(3), p. 568.Google Scholar
Trevelline, B. K. and Kohl, K. D., 2022. The gut microbiome influences host diet selection behavior. Proceedings of the National Academy of Sciences of the United States of America, 119(17), p. e2117537119.CrossRefGoogle ScholarPubMed
Dong, T. S., Guan, M., Mayer, E. A., et al., 2022. Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain’s reward center. Gut Microbes, 14(1), p. 2051999.Google Scholar
Minichino, A., Jackson, M. A., Francesconi, M., et al., 2021. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Molecular Psychiatry, 26(11), pp. 6269–76.Google Scholar
Atzeni, A., Bastiaanssen, T. F. S., Cryan, J. F., et al., 2022. Taxonomic and functional fecal microbiota signatures associated with insulin resistance in non-diabetic subjects with overweight/obesity within the frame of the PREDIMED-Plus study. Frontiers in Endocrinology, 13.Google Scholar
Liu, Y., Wang, Y., Ni, Y., et al., 2020. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metabolism, 31(1), pp. 7791.e5.Google Scholar
Thirion, F., Speyer, H., Hansen, T. H., et al., in press. Alteration of gut microbiome in patients with schizophrenia indicates links between bacterial tyrosine biosynthesis and cognitive dysfunction. Biological Psychiatry Global Open Science.Google Scholar
Li, S., Zhuo, M., Huang, X., et al., 2020. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ, 8, p. e9574.CrossRefGoogle ScholarPubMed
Pan, R., Zhang, X., Gao, J., et al., 2020. Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: a cohort study. Psychiatry Research, 291, p. 113260.Google Scholar
Ma, X., Asif, H., Dai, L., et al., 2020. Alteration of the gut microbiome in first-episode drug-naive and chronic medicated schizophrenia correlate with regional brain volumes. Journal of Psychiatric Research, 123, pp. 136–44.Google Scholar
Nguyen, T. T., Kosciolek, T., Maldonado, Y., et al., 2019. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophrenia Research, 204, pp. 23–9.Google Scholar
He, Y., Kosciolek, T., Tang, J., et al., 2018. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. European Psychiatry: The Journal of the Association of European Psychiatrists, 53, pp. 3745.CrossRefGoogle ScholarPubMed
Shen, Y., Xu, J., Li, Z., et al., 2018. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophrenia Research, 197, pp. 470–7.Google Scholar
Schwarz, E., Maukonen, J., Hyytiainen, T., et al., 2018. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophrenia Research, 192, pp. 398403.CrossRefGoogle ScholarPubMed
Severance, E. G., Gressitt, K. L., Stallings, C. R., et al., 2016. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophrenia, 2, p. 16018.CrossRefGoogle ScholarPubMed
Castro-Nallar, E., Bendall, M. L., Perez-Losada, M., et al., 2015. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ, 3, p. e1140.CrossRefGoogle ScholarPubMed
Yolken, R. H., Severance, E. G., Sabunciyan, S., et al., 2015. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophrenia Bulletin, 41(5), pp. 1153–61.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×