Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T16:20:38.718Z Has data issue: false hasContentIssue false

References and Further Reading

Published online by Cambridge University Press:  28 October 2022

Wallace Arthur
Affiliation:
Emeritus Professor of Zoology, National University of Ireland, Galway
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Green, J., Hoehler, T., Neveu, M., Domagal-Goldman, S., Scalice, D., and Voytek, M. 2021. Call for a framework for reporting evidence for life beyond Earth. Nature, 598: 575579. https://doi.org/10.1038/s41586-021-03804-9.Google Scholar
Livio, M. 2020. Galileo and the Science Deniers. Simon and Schuster, New York.Google Scholar
Cottrell, G. 2016. Telescopes: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Cocconi, G. and Morrison, P. 1959. Searching for interstellar communications. Nature, 184: 844846.CrossRefGoogle Scholar
Lowell, P. 1906. Mars and Its Canals. Macmillan, New York.Google Scholar
Lowell, P. 1908. Mars as the Abode of Life. Macmillan, New York.Google Scholar
Strous, L. 2020. Who discovered that the Sun was a star? Stanford Solar Center, Stanford, CA. http://solar-center.stanford.edu/FAQ/Qsunasstar.html.Google Scholar
Catling, D. 2013. Astrobiology: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Cockell, C. 2020. Astrobiology: Understanding Life in the Universe, 2nd edition. Wiley-Blackwell, Hoboken, NJ.Google Scholar
Kolb, V. (ed.) 2018. Handbook of Astrobiology. CRC Press, Boca Raton, FL.Google Scholar
Lingam, M. and Loeb, A. 2021. Life in the Cosmos: From Biosignatures to Technosignatures. Harvard University Press, Cambridge, MA.Google Scholar
Rothery, D. A., Gilmour, I., and Sephton, M. A. 2018. An Introduction to Astrobiology, 3rd edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cross, F. R., Carvell, G. E., Jackson, R. R., and Grace, R. C. 2020. Arthropod intelligence? The case for Portia. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.568049.Google Scholar
Godfrey-Smith, P. 2017. Other Minds: The Octopus and the Evolution of Intelligent Life. Collins, London.Google Scholar
Neubauer, S., Hublin, J.-J., and Gunz, P. 2018. The evolution of modern human brain shape. Science Advances, 4: eaao5961. https://doi.org/10.1126/sciadv.aao5961.CrossRefGoogle ScholarPubMed
Ward, P. D. and Brownlee, D. 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York.Google Scholar

Secondary Sources

Green, J., Hoehler, T., Neveu, M., Domagal-Goldman, S., Scalice, D., and Voytek, M. 2021. Call for a framework for reporting evidence for life beyond Earth. Nature, 598: 575579. https://doi.org/10.1038/s41586-021-03804-9.Google Scholar
Livio, M. 2020. Galileo and the Science Deniers. Simon and Schuster, New York.Google Scholar
Cottrell, G. 2016. Telescopes: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Cocconi, G. and Morrison, P. 1959. Searching for interstellar communications. Nature, 184: 844846.CrossRefGoogle Scholar
Lowell, P. 1906. Mars and Its Canals. Macmillan, New York.Google Scholar
Lowell, P. 1908. Mars as the Abode of Life. Macmillan, New York.Google Scholar
Strous, L. 2020. Who discovered that the Sun was a star? Stanford Solar Center, Stanford, CA. http://solar-center.stanford.edu/FAQ/Qsunasstar.html.Google Scholar
Catling, D. 2013. Astrobiology: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Cockell, C. 2020. Astrobiology: Understanding Life in the Universe, 2nd edition. Wiley-Blackwell, Hoboken, NJ.Google Scholar
Kolb, V. (ed.) 2018. Handbook of Astrobiology. CRC Press, Boca Raton, FL.Google Scholar
Lingam, M. and Loeb, A. 2021. Life in the Cosmos: From Biosignatures to Technosignatures. Harvard University Press, Cambridge, MA.Google Scholar
Rothery, D. A., Gilmour, I., and Sephton, M. A. 2018. An Introduction to Astrobiology, 3rd edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cross, F. R., Carvell, G. E., Jackson, R. R., and Grace, R. C. 2020. Arthropod intelligence? The case for Portia. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.568049.Google Scholar
Godfrey-Smith, P. 2017. Other Minds: The Octopus and the Evolution of Intelligent Life. Collins, London.Google Scholar
Neubauer, S., Hublin, J.-J., and Gunz, P. 2018. The evolution of modern human brain shape. Science Advances, 4: eaao5961. https://doi.org/10.1126/sciadv.aao5961.CrossRefGoogle ScholarPubMed
Ward, P. D. and Brownlee, D. 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York.Google Scholar
Natarajan, P. 2016. Mapping the Heavens: The Radical Scientific Ideas that Reveal the Cosmos. Yale University Press, New Haven, CT.Google Scholar
Jones, M. H., Lambourne, R. J. A., and Serjeant, S. (eds.) 2016. An Introduction to Galaxies and Cosmology, 2nd edition. Cambridge University Press, Cambridge.Google Scholar
Harikane, Y. et al. (14 authors) 2022. A search for H-dropout Lyman break galaxies at z ~ 12–16. The Astrophysical Journal, 929: 1 (15 pp). https://doi.org/10.3847/1538-4357/ac53a9.Google Scholar
Oesch, P. A. et al. (18 authors) 2016. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism technology. The Astrophysical Journal, 819: 129 (11 pp). https://doi.org/10.3847/0004-637X/819/2/129.Google Scholar
Green, S. F. and Jones, M. H. (eds.) 2015. An Introduction to the Sun and Stars, 2nd edition. Cambridge University Press, Cambridge.Google Scholar
Anchordoqui, L. and Chudnovsky, E. 2020. Can self-replicating species flourish in the interior of a star? Letters in High Energy Physics, LHEP-166. https://doi.org/10.31526/lhep.2020.166.Google Scholar
Stevenson, D. J. 1999. Life-sustaining planets in interstellar space? Nature, 400: 32.Google Scholar
Trefil, J. and Summers, M. 2019. Imagined Life: A Speculative Scientific Journey among the Exoplanets in Search of Intelligent Aliens, Ice Creatures, and Supergravity Animals. Smithsonian Books, Washington, DC.Google Scholar
Cabrera, J. et al. (10 authors) 2014. The planetary system to KIC 11442793: a compact analogue to the solar system. The Astrophysical Journal, 781: 18 (13 pp). https://doi.org/10.1088/0004-637X/781/1/18.Google Scholar
Shallue, C. J. and Vanderberg, A. 2018. Identifying planets with deep learning: a five-planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. The Astrophysical Journal, 155: 94 (21 pp). https://doi.org/10.3847/1538-3881/aa9e09.Google Scholar
Taylor, S. R. 2012. Destiny or Chance Revisited: Planets and Their Place in the Cosmos. Cambridge University Press, Cambridge.Google Scholar
Hashimoto, T. et al. (24 authors) 2018. The onset of star formation 250 million years after the Big Bang. Nature, 557: 392395. https://doi.org/10.1038/s41586-018-0117-z.Google Scholar
Natarajan, P. 2016. Mapping the Heavens: The Radical Scientific Ideas that Reveal the Cosmos. Yale University Press, New Haven, CT.Google Scholar
Jones, M. H., Lambourne, R. J. A., and Serjeant, S. (eds.) 2016. An Introduction to Galaxies and Cosmology, 2nd edition. Cambridge University Press, Cambridge.Google Scholar
Harikane, Y. et al. (14 authors) 2022. A search for H-dropout Lyman break galaxies at z ~ 12–16. The Astrophysical Journal, 929: 1 (15 pp). https://doi.org/10.3847/1538-4357/ac53a9.Google Scholar
Oesch, P. A. et al. (18 authors) 2016. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism technology. The Astrophysical Journal, 819: 129 (11 pp). https://doi.org/10.3847/0004-637X/819/2/129.Google Scholar
Green, S. F. and Jones, M. H. (eds.) 2015. An Introduction to the Sun and Stars, 2nd edition. Cambridge University Press, Cambridge.Google Scholar
Anchordoqui, L. and Chudnovsky, E. 2020. Can self-replicating species flourish in the interior of a star? Letters in High Energy Physics, LHEP-166. https://doi.org/10.31526/lhep.2020.166.Google Scholar
Stevenson, D. J. 1999. Life-sustaining planets in interstellar space? Nature, 400: 32.Google Scholar
Trefil, J. and Summers, M. 2019. Imagined Life: A Speculative Scientific Journey among the Exoplanets in Search of Intelligent Aliens, Ice Creatures, and Supergravity Animals. Smithsonian Books, Washington, DC.Google Scholar
Cabrera, J. et al. (10 authors) 2014. The planetary system to KIC 11442793: a compact analogue to the solar system. The Astrophysical Journal, 781: 18 (13 pp). https://doi.org/10.1088/0004-637X/781/1/18.Google Scholar
Shallue, C. J. and Vanderberg, A. 2018. Identifying planets with deep learning: a five-planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. The Astrophysical Journal, 155: 94 (21 pp). https://doi.org/10.3847/1538-3881/aa9e09.Google Scholar
Taylor, S. R. 2012. Destiny or Chance Revisited: Planets and Their Place in the Cosmos. Cambridge University Press, Cambridge.Google Scholar
Hashimoto, T. et al. (24 authors) 2018. The onset of star formation 250 million years after the Big Bang. Nature, 557: 392395. https://doi.org/10.1038/s41586-018-0117-z.Google Scholar
Pross, A. 2012. What Is Life? How Chemistry Becomes Biology. Oxford University Press, Oxford.Google Scholar
Bernhardt, H. S. 2012. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)? Biology Direct, 7: 23 (10 pp). https://doi.org/10.1186/1745-6150-7-23.Google Scholar
Müller, F. et al. (9 authors) 2022. A prebiotically plausible scenario of an RNA-peptide world. Nature, 605: 279284. https://doi.org/10.1038/s41586-022-04676-3.Google Scholar
Neveu, M., Kim, H.-J., and Benner, S. A. 2013. The ‘strong’ RNA world hypothesis: fifty years old. Astrobiology, 13: 391403. https://doi.org/10.1089/ast.2012.0868.Google Scholar
Finney, J. 2015. Water: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Doolittle, W. F. 2020. Evolution: two domains of life or three? Current Biology, 30: R177R179. https://doi.org/10.1016/j.cub.2020.01.010.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, IL.Google Scholar
Whittaker, R. H. 1969. New concepts of kingdoms of organisms: evolutionary radiations are better represented by new classifications than by the traditional two kingdoms. Science, 163: 150160.Google Scholar
Woese, C. R., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the USA, 87: 45764579.Google Scholar
Martin, W. F., Garg, S., and Zimorski, V. 2015. Endosymbiotic theories for eukaryotic origin. Philosophical Transactions of the Royal Society B, 370: 20140330. https://doi.org/10.1098/rstb.2014.0330.Google Scholar
Satoh, N. 2020. Endosymbiotic Theories of the Origins of Organelles Revisited: Retrospects and Prospects. Springer Nature, Singapore.Google Scholar
Stadnichuk, I. N. and Kusnetsov, V. V. 2021. Endosymbiotic origin of chloroplasts in plant cells’ evolution. Russian Journal of Plant Physiology, 68: 116. https://doi.org/10.1134/S1021443721010179.Google Scholar
Wilkinson, M. 2016. Restless Creatures: The Story of Life in Ten Movements. Basic Books, New York.Google Scholar
Pross, A. 2012. What Is Life? How Chemistry Becomes Biology. Oxford University Press, Oxford.Google Scholar
Bernhardt, H. S. 2012. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)? Biology Direct, 7: 23 (10 pp). https://doi.org/10.1186/1745-6150-7-23.Google Scholar
Müller, F. et al. (9 authors) 2022. A prebiotically plausible scenario of an RNA-peptide world. Nature, 605: 279284. https://doi.org/10.1038/s41586-022-04676-3.Google Scholar
Neveu, M., Kim, H.-J., and Benner, S. A. 2013. The ‘strong’ RNA world hypothesis: fifty years old. Astrobiology, 13: 391403. https://doi.org/10.1089/ast.2012.0868.Google Scholar
Finney, J. 2015. Water: A Very Short Introduction. Oxford University Press, Oxford.Google Scholar
Doolittle, W. F. 2020. Evolution: two domains of life or three? Current Biology, 30: R177R179. https://doi.org/10.1016/j.cub.2020.01.010.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, IL.Google Scholar
Whittaker, R. H. 1969. New concepts of kingdoms of organisms: evolutionary radiations are better represented by new classifications than by the traditional two kingdoms. Science, 163: 150160.Google Scholar
Woese, C. R., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the USA, 87: 45764579.Google Scholar
Martin, W. F., Garg, S., and Zimorski, V. 2015. Endosymbiotic theories for eukaryotic origin. Philosophical Transactions of the Royal Society B, 370: 20140330. https://doi.org/10.1098/rstb.2014.0330.Google Scholar
Satoh, N. 2020. Endosymbiotic Theories of the Origins of Organelles Revisited: Retrospects and Prospects. Springer Nature, Singapore.Google Scholar
Stadnichuk, I. N. and Kusnetsov, V. V. 2021. Endosymbiotic origin of chloroplasts in plant cells’ evolution. Russian Journal of Plant Physiology, 68: 116. https://doi.org/10.1134/S1021443721010179.Google Scholar
Wilkinson, M. 2016. Restless Creatures: The Story of Life in Ten Movements. Basic Books, New York.Google Scholar
Huang, S.-S. 1959. Occurrence of life in the Universe. American Scientist, 47: 397402.Google Scholar
Kasting, J. 2010. How to Find a Habitable Planet. Princeton University Press, Princeton, NJ.Google Scholar
Kasting, J., Whitmire, D. P., and Reynolds, R. T. 1993. Habitable zones around main sequence stars. Icarus, 101: 108128.Google Scholar
Ramirez, R. M. 2018. A more comprehensive habitable zone for finding life on other planets. Geosciences, 8: 280. https://doi.org/10.3390/geosciences8080280.Google Scholar
Tasker, E. 2017. The Planet Factory: Exoplanets and the Search for a Second Earth. Bloomsbury, London.Google Scholar
Schulte, P. et al. (42 authors) 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327: 12141218. https://doi.org/10.1126/science.1177265.Google Scholar
Barnes, R. 2017. Tidal locking of habitable exoplanets. Celestial Mechanics and Dynamical Astronomy, 129: 509536. https://doi.org/10.1007/s10569-017-9783-7.Google Scholar
Pierrehumbert, R. T. and Hammond, M. 2019. Atmospheric circulation of tide-locked exoplanets. Annual Review of Fluid Mechanics, 51: 272303. https://doi.org/10.1146/annurev-fluid-010518-040516.Google Scholar
Extrasolar Planets Encyclopaedia. http://exoplanet.eu.Google Scholar
Huang, S.-S. 1959. Occurrence of life in the Universe. American Scientist, 47: 397402.Google Scholar
Kasting, J. 2010. How to Find a Habitable Planet. Princeton University Press, Princeton, NJ.Google Scholar
Kasting, J., Whitmire, D. P., and Reynolds, R. T. 1993. Habitable zones around main sequence stars. Icarus, 101: 108128.Google Scholar
Ramirez, R. M. 2018. A more comprehensive habitable zone for finding life on other planets. Geosciences, 8: 280. https://doi.org/10.3390/geosciences8080280.Google Scholar
Tasker, E. 2017. The Planet Factory: Exoplanets and the Search for a Second Earth. Bloomsbury, London.Google Scholar
Schulte, P. et al. (42 authors) 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327: 12141218. https://doi.org/10.1126/science.1177265.Google Scholar
Barnes, R. 2017. Tidal locking of habitable exoplanets. Celestial Mechanics and Dynamical Astronomy, 129: 509536. https://doi.org/10.1007/s10569-017-9783-7.Google Scholar
Pierrehumbert, R. T. and Hammond, M. 2019. Atmospheric circulation of tide-locked exoplanets. Annual Review of Fluid Mechanics, 51: 272303. https://doi.org/10.1146/annurev-fluid-010518-040516.Google Scholar
Extrasolar Planets Encyclopaedia. http://exoplanet.eu.Google Scholar
Green, J., Hoehler, T., Neveu, M., Domagal-Goldman, S., Scalice, D., and Voytek, M. 2021. Call for a framework for reporting evidence for life beyond Earth. Nature, 598: 575579. https://doi.org/10.1038/s41586-021-03804-9.Google Scholar
Greaves, J. S. et al. (19 authors) 2021. Phosphine gas in the cloud decks of Venus. Nature Astronomy, 5: 655664. https://doi.org/10.1038/s41550-020-1174-4.Google Scholar
Villanueva, G. L. et al. (27 authors) 2021. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 5: 631635. https://doi.org/10.1038/s41550-021-01422-z.Google Scholar
McKay, D. S. et al. (9 authors) 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273: 924930. https://doi.org/10.1126/science.273.5277.924.Google Scholar
Misra, A. K., Acosta-Maeda, T. E., Scott, E. R. D., and Sharma, S. K. 2014. Possible mechanism for explaining the origin and size distribution of Martian hematite spherules. Planetary and Space Science, 92: 1623. https://doi.org/10.1016/j.pss.2014.01.020.Google Scholar
Hansen, C. J. et al. (11 authors) 2011. The composition and structure of the Enceladus plume. Geophysical Research Letters, 38 (11). https://doi.org/10.1029/2011GL047415.Google Scholar
Hendrix, A. R. et al. (28 authors) 2019. The NASA roadmap to ocean worlds. Astrobiology, 19 (1): (27 pp). https://doi.org/10.1089/ast.2018.1955.Google Scholar
Mastrogiuseppe, M. et al. (7 authors) 2019. Deep and methane-rich lakes on Titan. Nature Astronomy, 3: 535542. https://doi.org/10.1038/s41550-019-0714-2.Google Scholar
Merali, Z. 2015. News: Search for extra-terrestrial intelligence gets a $100 million boost – Russian billionaire Yuri Milner announces most comprehensive hunt for alien life. Nature, 523: 392393. https://doi.org/10.1038/nature.2015.18016.Google Scholar
Milner, Y. et al. (32 authors) 2015. Open letter: Are we alone? Breakthrough Initiatives. https://breakthroughinitiatives.org/arewealone.Google Scholar
Loeb, A. 2021. Extraterrestrial: The First Sign of Intelligent Life Beyond Earth. John Murray, London.Google Scholar
Green, J., Hoehler, T., Neveu, M., Domagal-Goldman, S., Scalice, D., and Voytek, M. 2021. Call for a framework for reporting evidence for life beyond Earth. Nature, 598: 575579. https://doi.org/10.1038/s41586-021-03804-9.Google Scholar
Greaves, J. S. et al. (19 authors) 2021. Phosphine gas in the cloud decks of Venus. Nature Astronomy, 5: 655664. https://doi.org/10.1038/s41550-020-1174-4.Google Scholar
Villanueva, G. L. et al. (27 authors) 2021. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 5: 631635. https://doi.org/10.1038/s41550-021-01422-z.Google Scholar
McKay, D. S. et al. (9 authors) 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273: 924930. https://doi.org/10.1126/science.273.5277.924.Google Scholar
Misra, A. K., Acosta-Maeda, T. E., Scott, E. R. D., and Sharma, S. K. 2014. Possible mechanism for explaining the origin and size distribution of Martian hematite spherules. Planetary and Space Science, 92: 1623. https://doi.org/10.1016/j.pss.2014.01.020.Google Scholar
Hansen, C. J. et al. (11 authors) 2011. The composition and structure of the Enceladus plume. Geophysical Research Letters, 38 (11). https://doi.org/10.1029/2011GL047415.Google Scholar
Hendrix, A. R. et al. (28 authors) 2019. The NASA roadmap to ocean worlds. Astrobiology, 19 (1): (27 pp). https://doi.org/10.1089/ast.2018.1955.Google Scholar
Mastrogiuseppe, M. et al. (7 authors) 2019. Deep and methane-rich lakes on Titan. Nature Astronomy, 3: 535542. https://doi.org/10.1038/s41550-019-0714-2.Google Scholar
Merali, Z. 2015. News: Search for extra-terrestrial intelligence gets a $100 million boost – Russian billionaire Yuri Milner announces most comprehensive hunt for alien life. Nature, 523: 392393. https://doi.org/10.1038/nature.2015.18016.Google Scholar
Milner, Y. et al. (32 authors) 2015. Open letter: Are we alone? Breakthrough Initiatives. https://breakthroughinitiatives.org/arewealone.Google Scholar
Loeb, A. 2021. Extraterrestrial: The First Sign of Intelligent Life Beyond Earth. John Murray, London.Google Scholar
Jenkins, J. M. et al. (29 authors) 2015. Discovery and validation of Kepler 452b: A 1.6 R+ super Earth exoplanet in the habitable zone of a G2 star. The Astronomical Journal, 150: 56. https://doi.org/10.1088/0004-6256/150/2/56.Google Scholar
Mayor, M. and Queloz, D. 1995. A Jupiter-mass companion to a solar-type star. Nature, 378: 355359.Google Scholar
Quintana, E. V. et al. (23 authors) 2014. An Earth-sized planet in the habitable zone of a cool star. Science, 344: 277280. https://doi.org/10.1126/science.1249403.Google Scholar
Wolszczan, A. and Frail, D. A. 1992. A planetary system around the millisecond pulsar PSR1257 + 12. Nature, 355: 145147.Google Scholar
De Wit, J. et al. (17 authors) 2018. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nature Astronomy, 2: 214219. https://doi.org/10.1038/s41550-017-0374-z.Google Scholar
Gillon, M. et al. (15 authors) 2016. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature, 533: 221224. https://doi.org/10.1038/nature17448.Google Scholar
Gillon, M. et al. (30 authors) 2017. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542: 456460. https://doi.org/10.1038/nature21360.Google Scholar
Anglada-Escudé, G. et al. (31 authors) 2016. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536: 437440. https://doi.org/10.1038/nature19106.Google Scholar
Feng, F. et al. (7 authors) 2017. Color difference makes a difference: four candidate planets around Tau Ceti. The Astrophysical Journal, 154: 135 (23 pp). https://doi.org/10.3847/1538-3881/aa83b4.Google Scholar
Gilbert, E. A. et al. (46 authors) 2020. The first habitable-zone Earth-sized planet from TESS: validation of the TOI-700 system. The Astrophysical Journal, 160: 116 (21 pp). https://doi.org/10.3847/1538-3881/aba4b3.Google Scholar
Jenkins, J. M. et al. (29 authors) 2015. Discovery and validation of Kepler 452b: A 1.6 R+ super Earth exoplanet in the habitable zone of a G2 star. The Astronomical Journal, 150: 56 (19 pp). https://doi.org/10.1088/0004-6256/150/2/56.Google Scholar
Torres, G. et al. (19 authors) 2017. Validation of 12 small Kepler transiting planets in the habitable zone. The Astrophysical Journal, 154: 264 (19 pp). https://doi.org/10.3847/1538-3881/aa984b.Google Scholar
Catling, D. C. and Kasting, J. F. 2017. Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press, Cambridge.Google Scholar
Charbonneau, D., Brown, T. M., Noyes, R. W., and Gilliland, R. L. 2002. Detection of an extrasolar planet atmosphere. The Astrophysical Journal, 568: 377384. https://doi.org/10.1086/338770.Google Scholar
Konopacky, Q. M., Barman, T. S., MacIntosh, B. A., and Marois, C. 2013. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science, 339: 13981401. https://doi.org/10.1126/science.1232003.Google Scholar
Richardson, L. J., Deming, D., Horning, K., Seager, S., and Harrington, J. 2007. A spectrum of an extrasolar planet. Nature, 445: 892895. https://doi.org/10.1038/nature05636.Google Scholar
Schaefer, L. and Parmentier, V. 2021. The air over there: exploring exoplanet atmospheres. Elements, 17: 257263. https://doi.org/10.2138/gselements.17.4.257.CrossRefGoogle Scholar
Seager, S. 2010. Exoplanet Atmospheres: Physical Processes. Princeton University Press, Princeton and Oxford.Google Scholar
Jenkins, J. M. et al. (29 authors) 2015. Discovery and validation of Kepler 452b: A 1.6 R+ super Earth exoplanet in the habitable zone of a G2 star. The Astronomical Journal, 150: 56. https://doi.org/10.1088/0004-6256/150/2/56.Google Scholar
Mayor, M. and Queloz, D. 1995. A Jupiter-mass companion to a solar-type star. Nature, 378: 355359.Google Scholar
Quintana, E. V. et al. (23 authors) 2014. An Earth-sized planet in the habitable zone of a cool star. Science, 344: 277280. https://doi.org/10.1126/science.1249403.Google Scholar
Wolszczan, A. and Frail, D. A. 1992. A planetary system around the millisecond pulsar PSR1257 + 12. Nature, 355: 145147.Google Scholar
De Wit, J. et al. (17 authors) 2018. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nature Astronomy, 2: 214219. https://doi.org/10.1038/s41550-017-0374-z.Google Scholar
Gillon, M. et al. (15 authors) 2016. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature, 533: 221224. https://doi.org/10.1038/nature17448.Google Scholar
Gillon, M. et al. (30 authors) 2017. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542: 456460. https://doi.org/10.1038/nature21360.Google Scholar
Anglada-Escudé, G. et al. (31 authors) 2016. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536: 437440. https://doi.org/10.1038/nature19106.Google Scholar
Feng, F. et al. (7 authors) 2017. Color difference makes a difference: four candidate planets around Tau Ceti. The Astrophysical Journal, 154: 135 (23 pp). https://doi.org/10.3847/1538-3881/aa83b4.Google Scholar
Gilbert, E. A. et al. (46 authors) 2020. The first habitable-zone Earth-sized planet from TESS: validation of the TOI-700 system. The Astrophysical Journal, 160: 116 (21 pp). https://doi.org/10.3847/1538-3881/aba4b3.Google Scholar
Jenkins, J. M. et al. (29 authors) 2015. Discovery and validation of Kepler 452b: A 1.6 R+ super Earth exoplanet in the habitable zone of a G2 star. The Astronomical Journal, 150: 56 (19 pp). https://doi.org/10.1088/0004-6256/150/2/56.Google Scholar
Torres, G. et al. (19 authors) 2017. Validation of 12 small Kepler transiting planets in the habitable zone. The Astrophysical Journal, 154: 264 (19 pp). https://doi.org/10.3847/1538-3881/aa984b.Google Scholar
Catling, D. C. and Kasting, J. F. 2017. Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press, Cambridge.Google Scholar
Charbonneau, D., Brown, T. M., Noyes, R. W., and Gilliland, R. L. 2002. Detection of an extrasolar planet atmosphere. The Astrophysical Journal, 568: 377384. https://doi.org/10.1086/338770.Google Scholar
Konopacky, Q. M., Barman, T. S., MacIntosh, B. A., and Marois, C. 2013. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science, 339: 13981401. https://doi.org/10.1126/science.1232003.Google Scholar
Richardson, L. J., Deming, D., Horning, K., Seager, S., and Harrington, J. 2007. A spectrum of an extrasolar planet. Nature, 445: 892895. https://doi.org/10.1038/nature05636.Google Scholar
Schaefer, L. and Parmentier, V. 2021. The air over there: exploring exoplanet atmospheres. Elements, 17: 257263. https://doi.org/10.2138/gselements.17.4.257.CrossRefGoogle Scholar
Seager, S. 2010. Exoplanet Atmospheres: Physical Processes. Princeton University Press, Princeton and Oxford.Google Scholar
Arthur, W. 2020. The Biological Universe: Life in the Milky Way and Beyond. Cambridge University Press, Cambridge.Google Scholar
Cockell, C. 2018. The Equations of Life: How Physics Shapes Evolution. Atlantic Books, London.Google Scholar
Conway Morris, S. 2003. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.Google Scholar
Darling, D. 2001. Life Everywhere: The Maverick Science of Astrobiology. Basic Books, New York.Google Scholar
Kershenbaum, A. 2020. The Zoologist’s Guide to the Galaxy: What Animals on Earth Reveal about Aliens – and Ourselves. Penguin Random House, New York.Google Scholar
McGhee, G. R. 2019. Convergent Evolution on Earth: Lessons for the Search for Extraterrestrial Life. MIT Press, Cambridge, MA.Google Scholar
Schulze-Makuch, D. and Bains, W. 2017. The Cosmic Zoo: Complex Life on Many Worlds. Springer, Cham, Switzerland.Google Scholar
Trefil, J. and Summers, M. 2019. Imagined Life: A Speculative Scientific Journey Among the Exoplanets in Search of Intelligent Aliens, Ice Creatures, and Supergravity Animals. Smithsonian Books, Washington DC.Google Scholar
Ward, P. D. and Brownlee, D. 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York.Google Scholar
Jönnson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, R., and Rettberg, P. 2008. Tardigrades survive exposure to space in low Earth orbit. Current Biology, 18: R729R731. https://doi.org/10.1016/j.cub.2008.06.048.Google Scholar
Darwin, C. 1859. On the Origin of Species by Mean of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Murray, London.Google Scholar
Williams, G. C. 1992. Natural Selection: Domains, Levels, and Challenges. Oxford University Press, New York.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford.Google Scholar
Gould, S. J. 1983. Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History. Norton, New York.Google Scholar
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York.Google Scholar
Monod, J. 1972. Chance and Necessity: Essay on the Natural Philosophy of Modern Biology. Knopf, New York.Google Scholar
Arthur, W. 2020. The Biological Universe: Life in the Milky Way and Beyond. Cambridge University Press, Cambridge.Google Scholar
Cockell, C. 2018. The Equations of Life: How Physics Shapes Evolution. Atlantic Books, London.Google Scholar
Conway Morris, S. 2003. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.Google Scholar
Darling, D. 2001. Life Everywhere: The Maverick Science of Astrobiology. Basic Books, New York.Google Scholar
Kershenbaum, A. 2020. The Zoologist’s Guide to the Galaxy: What Animals on Earth Reveal about Aliens – and Ourselves. Penguin Random House, New York.Google Scholar
McGhee, G. R. 2019. Convergent Evolution on Earth: Lessons for the Search for Extraterrestrial Life. MIT Press, Cambridge, MA.Google Scholar
Schulze-Makuch, D. and Bains, W. 2017. The Cosmic Zoo: Complex Life on Many Worlds. Springer, Cham, Switzerland.Google Scholar
Trefil, J. and Summers, M. 2019. Imagined Life: A Speculative Scientific Journey Among the Exoplanets in Search of Intelligent Aliens, Ice Creatures, and Supergravity Animals. Smithsonian Books, Washington DC.Google Scholar
Ward, P. D. and Brownlee, D. 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York.Google Scholar
Jönnson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, R., and Rettberg, P. 2008. Tardigrades survive exposure to space in low Earth orbit. Current Biology, 18: R729R731. https://doi.org/10.1016/j.cub.2008.06.048.Google Scholar
Darwin, C. 1859. On the Origin of Species by Mean of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Murray, London.Google Scholar
Williams, G. C. 1992. Natural Selection: Domains, Levels, and Challenges. Oxford University Press, New York.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford.Google Scholar
Gould, S. J. 1983. Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History. Norton, New York.Google Scholar
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York.Google Scholar
Monod, J. 1972. Chance and Necessity: Essay on the Natural Philosophy of Modern Biology. Knopf, New York.Google Scholar
Almecija, S., Hammond, A. S., Thompson, N. E., Pugh, K. D., Moyà-Solà, S., and Alba, D. M. 2021. Fossil apes and human evolution. Science, 372 (6542). https://doi.org/10.1126/science.abb4363.Google Scholar
Harmand, S. et al. (21 authors) 2015. 3.3-million-year-old stone tools from Lomekwi-3, West Turkana, Kenya. Nature, 521: 310315. https://doi.org/10.1038/nature14464.Google Scholar
Neubauer, S., Hublin, J.-J., and Gunz, P. 2018. The evolution of modern human brain shape. Science Advances, 4 (1): (8 pp). https://doi.org/10.1126/sciadv.aao5961.Google Scholar
Roberts, A. 2018. Evolution: The Human Story, 2nd edition. Dorling Kindersley, London.Google Scholar
Weaver, T. D. and Stringer, C. B. 2015. Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees. Proceedings of the Royal Society B, 282: 20151519. https://doi.org/10.1098/rspb.2015.1519.Google Scholar
Wyndham, J. 1951. The Day of the Triffids. Michael Joseph, London.Google Scholar
Cocconi, G. and Morrison, P. 1959. Searching for interstellar communications. Nature, 184: 844846.Google Scholar
Price, D. C. et al. (24 authors) 2020. The Breakthrough Listen search for intelligent life: observations of 1327 nearby stars over 1.10 to 3.45 GHz. The Astronomical Journal, 159: 86 (16 pp). https://doi.org/10.3847/1538-3881/ab65f1.Google Scholar
Sheikh, S. Z. et al. (18 authors) 2021. Analysis of the Breakthrough Listen signal of interest blc1 with a technosignature verification framework. Nature Astronomy, 5: 11531162. https://doi.org/10.1038/s41550-021-01508-8.Google Scholar
Traas, R. et al. (13 authors) 2021. The Breakthrough Listen search for intelligent life: searching for technosignatures in observations of TESS targets of interest. The Astronomical Journal, 161: 286 (12 pp). https://doi.org/10.3847/1538-3881/abf649.Google Scholar
Drake, F. and Sobel, D. 1992. Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence. Bantam Doubleday Bell, New York.Google Scholar
Drake, F. and Sobel, D. 2010. The origin of the Drake equation. Astronomy Beat, 46: 14.Google Scholar
Webb, S. 2015. If the Universe Is Teeming with Aliens … Where Is Everybody? Seventy-Five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life, 2nd edition. Springer International, Switzerland.Google Scholar
Almecija, S., Hammond, A. S., Thompson, N. E., Pugh, K. D., Moyà-Solà, S., and Alba, D. M. 2021. Fossil apes and human evolution. Science, 372 (6542). https://doi.org/10.1126/science.abb4363.Google Scholar
Harmand, S. et al. (21 authors) 2015. 3.3-million-year-old stone tools from Lomekwi-3, West Turkana, Kenya. Nature, 521: 310315. https://doi.org/10.1038/nature14464.Google Scholar
Neubauer, S., Hublin, J.-J., and Gunz, P. 2018. The evolution of modern human brain shape. Science Advances, 4 (1): (8 pp). https://doi.org/10.1126/sciadv.aao5961.Google Scholar
Roberts, A. 2018. Evolution: The Human Story, 2nd edition. Dorling Kindersley, London.Google Scholar
Weaver, T. D. and Stringer, C. B. 2015. Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees. Proceedings of the Royal Society B, 282: 20151519. https://doi.org/10.1098/rspb.2015.1519.Google Scholar
Wyndham, J. 1951. The Day of the Triffids. Michael Joseph, London.Google Scholar
Cocconi, G. and Morrison, P. 1959. Searching for interstellar communications. Nature, 184: 844846.Google Scholar
Price, D. C. et al. (24 authors) 2020. The Breakthrough Listen search for intelligent life: observations of 1327 nearby stars over 1.10 to 3.45 GHz. The Astronomical Journal, 159: 86 (16 pp). https://doi.org/10.3847/1538-3881/ab65f1.Google Scholar
Sheikh, S. Z. et al. (18 authors) 2021. Analysis of the Breakthrough Listen signal of interest blc1 with a technosignature verification framework. Nature Astronomy, 5: 11531162. https://doi.org/10.1038/s41550-021-01508-8.Google Scholar
Traas, R. et al. (13 authors) 2021. The Breakthrough Listen search for intelligent life: searching for technosignatures in observations of TESS targets of interest. The Astronomical Journal, 161: 286 (12 pp). https://doi.org/10.3847/1538-3881/abf649.Google Scholar
Drake, F. and Sobel, D. 1992. Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence. Bantam Doubleday Bell, New York.Google Scholar
Drake, F. and Sobel, D. 2010. The origin of the Drake equation. Astronomy Beat, 46: 14.Google Scholar
Webb, S. 2015. If the Universe Is Teeming with Aliens … Where Is Everybody? Seventy-Five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life, 2nd edition. Springer International, Switzerland.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×