Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T01:59:25.493Z Has data issue: false hasContentIssue false

9 - Metal Fuels

Published online by Cambridge University Press:  01 December 2022

Jacqueline O'Connor
Affiliation:
Pennsylvania State University
Bobby Noble
Affiliation:
Electric Power Research Institute
Tim Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

In the search for carbon-free renewable and sustainable fuels, an underexplored option is the use of metals as recyclable energy carriers. Metals can be produced via electrolytic processes at efficiencies comparable to hydrogen- or carbon-based carriers; metals are energy-dense and stable solids that are easy to transport and store. The key limitation to the use of metals as recyclable fuels is the lack of any mature technology for power generation using metal fuels. This chapter will review the overall concept of metals as recyclable fuels, discuss the possible options for metal-fueled power-generation systems, and identify the remaining science and technology gaps.

Type
Chapter
Information
Renewable Fuels
Sources, Conversion, and Utilization
, pp. 275 - 328
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, E. (2020, November 13). Iron powder passes first industrial test as renewable, carbon dioxide-free fuel: Oxidizing and reducing powdered iron has the potential to provide clean power on an industrial scale. IEEE Spectrum. https://spectrum.ieee.org/iron-powder-passes-first-industrial-test-as-renewable-co2free-fuelGoogle Scholar
Alinejad, B., & Mahmoodi, K. (2009). A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. International Journal of Hydrogen Energy, 34(19), 7934–38.Google Scholar
Allanore, A. (2014). Features and challenges of molten oxide electrolytes for metal extraction. Journal of The Electrochemical Society, 162(1), E13.Google Scholar
Allanore, A., Lavelaine, H., Birat, J. P., Valentin, G., & Lapicque, F. (2010). Experimental investigation of cell design for the electrolysis of iron oxide suspensions in alkaline electrolyte. Journal of Applied Electrochemistry, 40(11), 1957–66.CrossRefGoogle Scholar
Auner, N., & Holl, S. (2006). Silicon as energy carrier – facts and perspectives. Energy, 31(10–11), 1395–402.Google Scholar
Baker, R. A., & Strong, F. M. (1930). An oxy-aluminum blowtorch. Industrial & Engineering Chemistry, 22(7), 788–89.Google Scholar
Ballal, D. R. (1983). Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 385(1788), 2151.Google Scholar
Bardon, M. F., & Lambert, J. J. R. G. (1980). Powdered metals as fuels. Science Progress (1933), 66(263) 421–33.Google Scholar
Beach, D. B., Rondinone, A. J., Sumpter, B. G., Labinov, S. D., & Richards, R. K. (2007). Solid-state combustion of metallic nanoparticles: New possibilities for an alternative energy carrier. Journal of Energy Resources Technology, 129(1), 2932.CrossRefGoogle Scholar
Beckstead, M. W. (2005). Correlating aluminum burning times. Combustion, Explosion and Shock Waves, 41(5), 533–46.CrossRefGoogle Scholar
Belitskus, D. (1970). Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society, 117(8), 1097.Google Scholar
Bergthorson, J. M. (2018). Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science, 68, 169–96.CrossRefGoogle Scholar
Bergthorson, J. M., Goroshin, S., Soo, M. J., Julien, P., Palecka, J., Frost, D. L., & Jarvis, D. J. (2015). Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 160, 368–82.Google Scholar
Bergthorson, J. M., Yavor, Y., Palecka, J., Georges, W., Soo, M., Vickery, J., Goroshin, S., Frost, D. L., & Higgins, A. J. (2017). Metal-water combustion for clean propulsion and power generation. Applied Energy, 186, 1327.Google Scholar
Blais, F., Julien, P., Palecka, J., Goroshin, S., & Bergthorson, J. M. (2020). Effect of initial reactant temperature on flame speeds in aluminum dust suspensions. Combustion Science and Technology, 194(8), 114.Google Scholar
Braconnier, A., Chauveau, C., Halter, F., & Gallier, S. (2020). Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases. Experimental Thermal and Fluid Science, 117, 110110.Google Scholar
Brunner, G. (2014). Hydrothermal and Supercritical Water Processes. Elsevier.Google Scholar
Bunker, B. C., Nelson, G. C., Zavadil, K. R., Barbour, J. C., Wall, F. D., Sullivan, J. P., Windisch, C. F., Engelhardt, M. H., & Baer, D. R. (2002). Hydration of passive oxide films on aluminum. The Journal of Physical Chemistry B, 106(18), 4705–13.CrossRefGoogle Scholar
Bunker, C. E., & Smith, M. J. (2011). Nanoparticles for hydrogen generation. Journal of Materials Chemistry, 21(33), 12173–80.Google Scholar
Bunsen, R. W., & Roscoe, H. E. (1859). XXXV. Photo-chemical researches – Part IV. Philosophical Transactions of the Royal Society of London, 149, 879926.Google Scholar
Cassel, H. M. (1964). Some fundamental aspects of dust flames (Vol. 2). US Department of the Interior, Bureau of Mines.Google Scholar
Cassel, H. M., Gupta, A. K. Das, & Guruswamy, S. (1948). Factors affecting flame propagation through dust clouds. Symposium on Combustion and Flame, and Explosion Phenomena, 3(1), 185–90.Google Scholar
Dias, R. P., & Silvera, I. F. (2017). Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 355(6326), 715–18.Google Scholar
Dreizin, E. L. (2000). Phase changes in metal combustion. Progress in Energy and Combustion Science, 26(1), 5778.Google Scholar
Dreizin, E. L., Suslov, A. V., & Trunov, M. A. (1993). General trends in metal particles heterogeneous combustion. Combustion Science and Technology, 90(1–4), 7999.Google Scholar
du Preez, S. P., & Bessarabov, D. G. (2021). On-demand hydrogen generation by the hydrolysis of ball-milled aluminum composites: A process overview. International Journal of Hydrogen Energy, 46(72), 35790–813.Google Scholar
Dupiano, P., Stamatis, D., & Dreizin, E. L. (2011). Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. International Journal of Hydrogen Energy, 36(8), 4781–91.CrossRefGoogle Scholar
Eckhoff, R. (2003). Dust explosions in the process industries: Identification, assessment and control of dust hazards. Elsevier.Google Scholar
Egorov, A. G., Kal’nei, E. D., & Shaikin, A. P. (2001). Stabilization of the flame of a powdered metal combustible in a turbulent air flow. Combustion, Explosion and Shock Waves, 37(5), 516–22.Google Scholar
Elysis, A new era for the Aluminum Industry. (2021). www.elysis.com/enGoogle Scholar
Essenhigh, R. H., & Csaba, J. (1963). The thermal radiation theory for plane flame propagation in coal dust clouds. Proceedings of the Combustion Institute, 9(1), 111–25.Google Scholar
Fan, M., Sun, L., & Xu, F. (2010). Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation. Energy Conversion and Management, 51(3), 594–99.Google Scholar
Fan, M.-Q., Xu, F., & Sun, L.-X. (2007). Hydrogen generation by hydrolysis reaction of ball-milled Al− Bi alloys. Energy & Fuels, 21(4), 2294–98.Google Scholar
Feng, Y.-C., Xia, Z.-X., Huang, L.-Y., Ma, L.-K., & Yang, D.-L. (2019). Experimental investigation on the ignition and combustion characteristics of a single magnesium particle in air. Combustion, Explosion, and Shock Waves, 55(2), 210–19.CrossRefGoogle Scholar
Franzoni, F., Milani, M., Montorsi, L., & Golovitchev, V. (2010). Combined hydrogen production and power generation from aluminum combustion with water: analysis of the concept. International Journal of Hydrogen Energy, 35(4), 1548–59.CrossRefGoogle Scholar
Friedrich, H. E., & Mordike, B. L. (2006). Magnesium technology (Vol. 212). Springer-Verlag.Google Scholar
Fontijn, A., ed. (1992). Gas phase metal reactions. Elsevier. doi: 10.1016/C2009-0-09056-4.Google Scholar
Garra, P., Leyssens, G., Allgaier, O., Schönnenbeck, C., Tschamber, V., Brilhac, J.-F., Tahtouh, T., Guézet, O., & Allano, S. (2017). Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions. Applied Energy, 189, 578–87.Google Scholar
Geisler, R. (2002). A global view of the use of aluminum fuel in solid rocket motors. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 3748.Google Scholar
Glassman, I. (1959). Metal combustion processes. Aeronautical Engineering Laboratory Report No. 473. Princeton Univ., Aeronautical Engineering Lab.; 1959 Aug 1.Google Scholar
Godart, P., Fischman, J., Seto, K., & Hart, D. (2019). Hydrogen production from aluminum-water reactions subject to varied pressures and temperatures. International Journal of Hydrogen Energy, 44(23), 11448–58.Google Scholar
Goroshin, S., Fomenko, I., & Lee, J. H. S. (1996). Burning velocities in fuel-rich aluminum dust clouds. Proceedings of the Combustion Institute, 26(2), 1961–67.Google Scholar
Goroshin, S., Higgins, A., & Kamel, M. (2001). Powdered metals as fuel for hypersonic ramjets. 37th Joint Propulsion Conference and Exhibit, 3919.Google Scholar
Goroshin, S., Lee, J. H. S., & Shoshin, Y. (1998). Effect of the discrete nature of heat sources on flame propagation in particulate suspensions. Proceedings of the Combustion Institute, 27(1), 743–49.Google Scholar
Goroshin, S., Miera, A., Frost, D. L., & Lee, J. H. S. (1996). Metal-sulfur combustion. Proceedings of the Combustion Institute, 26(2), 1883–89.Google Scholar
Goroshin, S., Tang, F.-D., Higgins, A. J., & Lee, J. H. S. (2011). Laminar dust flames in a reduced-gravity environment. Acta Astronautica, 68(7–8), 656–66.Google Scholar
Gratz, E. S., Guan, X., Milshtein, J. D., Pal, U. B., & Powell, A. C. (2014). Mitigating electronic current in molten flux for the magnesium SOM process. Metallurgical and Materials Transactions B, 45(4), 1325–36.CrossRefGoogle Scholar
Greiner, L. (1960). Selection of high performing propellants for torpedoes. ARS Journal, 30(12), 1161–63.Google Scholar
Gromov, A. A., Il’in, A. P., Foerter-Barth, U., & Teipel, U. (2006). Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combustion, Explosion and Shock Waves, 42(2), 177–84.Google Scholar
Grosse, A. V., & Conway, J. B. (1958). Combustion of metals in oxygen. Industrial & Engineering Chemistry, 50(4), 663–72.Google Scholar
Hashim, S. A., Karmakar, S., & Roy, A. (2019). Effects of Ti and Mg particles on combustion characteristics of boron–HTPB-based solid fuels for hybrid gas generator in ducted rocket applications. Acta Astronautica, 160, 125–37.Google Scholar
Hiraki, T., Yamauchi, S., Iida, M., Uesugi, H., & Akiyama, T. (2007). Process for recycling waste aluminum with generation of high-pressure hydrogen. Environmental Science & Technology, 41(12), 4454–57.CrossRefGoogle ScholarPubMed
Huang, L. Y., Zhang, W. H., Xia, Z. X., & Hu, J. X. (2014). Experimental study on ignition process of a magnesium-based water ramjet engine. Journal of Propulsion and Power, 30(3), 857–62.Google Scholar
Huang, Y., Risha, G. A., Yang, V., & Yetter, R. A. (2009). Effect of particle size on combustion of aluminum particle dust in air. Combustion and Flame, 156(1), 513.Google Scholar
Ishihara, A., & Brewster, M. Q. (1993). Combustion studies of boron, magnesium, and aluminum composite propellants. Combustion Science and Technology, 87(1–6), 275–90.Google Scholar
Ivanov, V. G., Gavrilyuk, O. V., Glazkov, O. V., & Safronov, M. N. (2000). Specific features of the reaction between ultrafine aluminum and water in a combustion regime. Combustion, Explosion and Shock Waves, 36(2), 213–19.CrossRefGoogle Scholar
Ivanov, V. G., Safronov, M. N., & Gavrilyuk, O. V. (2001). Macrokinetics of oxidation of ultradisperse aluminum by water in the liquid phase. Combustion, Explosion and Shock Waves, 37(2), 173–77.CrossRefGoogle Scholar
Julien, P., & Bergthorson, J. M. (2017). Enabling the metal fuel economy: Green recycling of metal fuels. Sustainable Energy & Fuels, 1(3), 615–25.Google Scholar
Julien, P., Vickery, J., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2015). Freely-propagating flames in aluminum dust clouds. Combustion and Flame, 162(11), 4241–53.Google Scholar
Julien, P., Vickery, J., Whiteley, S., Wright, A., Goroshin, S., Bergthorson, J. M., & Frost, D. L. (2015). Effect of scale on freely propagating flames in aluminum dust clouds. Journal of Loss Prevention in the Process Industries, 36, 230–36.CrossRefGoogle Scholar
Julien, P., Whiteley, S., Goroshin, S., Soo, M. J., Frost, D. L., & Bergthorson, J. M. (2015). Flame structure and particle-combustion regimes in premixed methane–iron–air suspensions. Proceedings of the Combustion Institute, 35(2), 2431–38.Google Scholar
Julien, P., Whiteley, S., Soo, M., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2017). Flame speed measurements in aluminum suspensions using a counterflow burner. Proceedings of the Combustion Institute, 36(2), 2291–98.Google Scholar
Kellermann, R., Taroata, D., Schiemann, M., Eckert, H., Fischer, P., Scherer, V., Hock, R., & Schmid, G. (2014). Reaction products in the combustion of the high energy density storage material lithium with carbon dioxide and nitrogen. MRS Online Proceedings Library (OPL), 1644, Mrsf13-1644-dd07-02. doi:10.1557/opl.2014.314Google Scholar
Kim, H., Paramore, J., Allanore, A., & Sadoway, D. R. (2011). Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity. Journal of the Electrochemical Society, 158(10), E101.Google Scholar
Kvande, H., & Haupin, W. (2000). Cell voltage in aluminum electrolysis: A practical approach. Jom, 52(2), 3137.Google Scholar
Laraqui, D., Allgaier, O., Schönnenbeck, C., Leyssens, G., Brilhac, J.-F., Lomba, R., Dumand, C., & Guézet, O. (2019). Experimental study of a confined premixed metal combustor: Metal flame stabilization dynamics and nitrogen oxides production. Proceedings of the Combustion Institute, 37(3), 3175–84.Google Scholar
Laraqui, D., Leyssens, G., Schonnenbeck, C., Allgaier, O., Lomba, R., Dumand, C., & Brilhac, J.-F. (2020). Heat recovery and metal oxide particles trapping in a power generation system using a swirl-stabilized metal-air burner. Applied Energy, 264, 114691.CrossRefGoogle Scholar
Lavoisier, A. L., & Kerr, R. (1965). Elements of chemistry in a new systematic order containing all the modern discoveries (Vol. 1). Dover Publications.Google Scholar
Li, C., Hu, C., Xin, X., Li, Y., & Sun, H. (2016). Experimental study on the operation characteristics of aluminum powder fueled ramjet. Acta Astronautica, 129, 7481.Google Scholar
Li, Y., Hu, C., Zhu, X., Hu, J., Hu, X., Li, C., & Cai, Y. (2019). Experimental study on combustion characteristics of powder magnesium and carbon dioxide in rocket engine. Acta Astronautica, 155, 334–49.Google Scholar
Liang, G.-H., Gai, W.-Z., Deng, Z.-Y., Xu, P., & Cheng, Z. (2016). Kinetics study of the Al–water reaction promoted by an ultrasonically prepared Al(OH)3 suspension. RSC Advances, 6(42), 35305–14.Google Scholar
Lomba, R., Laboureur, P., Dumand, C., Chauveau, C., & Halter, F. (2019). Determination of aluminum-air burning velocities using PIV and laser sheet tomography. Proceedings of the Combustion Institute, 37(3), 3143–50.Google Scholar
Maas, P., Schiemann, M., Scherer, V., Fischer, P., Taroata, D., & Schmid, G. (2018). Lithium as energy carrier: CFD simulations of LI combustion in a 100 MW slag tap furnace. Applied Energy, 227, 506–15.Google Scholar
Mandilas, C., Karagiannakis, G., Konstandopoulos, A. G., Beatrice, C., Lazzaro, M., di Blasio, G., Molina, S., Pastor, J., & Gil, A. (2014). Study of basic oxidation and combustion characteristics of aluminum nanoparticles under enginelike conditions. Energy & Fuels, 28(5), 3430–41.CrossRefGoogle Scholar
Mandilas, C., Karagiannakis, G., Konstandopoulos, A. G., Beatrice, C., Lazzaro, M., di Blasio, G., Molina, S., Pastor, J., & Gil, A. (2016). Study of oxidation and combustion characteristics of iron nanoparticles under idealized and enginelike conditions. Energy & Fuels, 30(5), 4318–30.Google Scholar
Markstein, G. H. (1963). Combustion of metals. AIAA Journal, 1(3), 550–62.Google Scholar
Martin, A., Lambertin, D., Poignet, J.-C., Allibert, M., Bourges, G., Pescayre, L., & Fouletier, J. (2003). The electrochemical deoxidation of metal oxides by calcium using a solid oxide membrane. JOM, 55(10), 52–4.Google Scholar
McRae, M., Julien, P., Salvo, S., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2019). Stabilized, flat iron flames on a hot counterflow burner. Proceedings of the Combustion Institute, Jan 1;37(3), 3185–91.Google Scholar
Mercati, S., Milani, M., Montorsi, L., & Paltrinieri, F. (2013). Optimization of the working cycle for a hydrogen production and power generation plant based on aluminum combustion with water. International Journal of Hydrogen Energy, 38(18), 7209–17.Google Scholar
Miller, T. F., Walter, J. L., & Kiely, D. H. (2002). A next-generation AUV energy system based on aluminum-seawater combustion. Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, 2002, 111–19.Google Scholar
Muller, M., El-Rabii, H., & Fabbro, R. (2015). Liquid phase combustion of iron in an oxygen atmosphere. Journal of Materials Science, 50(9), 3337–50.Google Scholar
Nie, H., Schoenitz, M., & Dreizin, E. L. (2012). Calorimetric investigation of the aluminum–water reaction. International Journal of Hydrogen Energy, 37(15), 11035–45.Google Scholar
Nikolaevich, L. M. (2014). Reaction of Aluminum Powders with Liquid Water and Steam. Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Ning, D., Shoshin, Y., van Oijen, J. A., Finotello, G., & de Goey, L. P. H. (2021). Burn time and combustion regime of laser-ignited single iron particle. Combustion and Flame, 230, 111424.Google Scholar
Pal, U. B. (2008). A lower carbon footprint process for production of metals from their oxide sources. JOM, 60(2), 4347.Google Scholar
Palečka, J., Goroshin, S., Higgins, A. J., Shoshin, Y., de Goey, P., Angilella, J.-R., Oltmann, H., Stein, A., Schmitz, B., & Verga, A. (2020). Percolating reaction–diffusion waves (PERWAVES) – sounding rocket combustion experiments. Acta Astronautica, 177, 639–51.Google Scholar
Palečka, J., Sniatowsky, J., Goroshin, S., Higgins, A. J., & Bergthorson, J. M. (2019). A new kind of flame: Observation of the discrete flame propagation regime in iron particle suspensions in microgravity. Combustion and Flame, 209, 180–86.Google Scholar
Peacey, J. G., & Davenport, W. G. (2016). The iron blast furnace: Theory and practice. Pergamon Press.Google Scholar
Phuoc, T. X., & Chen, R.-H. (2013). Spontaneous ignition of low-concentration nano-sized Al-water slurry. Applied Energy, 101, 567–71.CrossRefGoogle Scholar
Porter, F. C. (1991). Zinc handbook: Properties, processing, and use in design. CRC Press.Google Scholar
Pourpoint, T. L., Wood, T. D., Pfeil, M. A., Tsohas, J., & Son, S. F. (2012). Feasibility study and demonstration of an aluminum and ice solid propellant. International Journal of Aerospace Engineering, 2012.CrossRefGoogle Scholar
Proulx, C., Moussa, R.B., Guessasma, M., Saleh, K., Fortin, J. Thermal radiation in dust flamepropagation. Journal of Loss Prevention in the Process Industries, 49, 896904.Google Scholar
Razavi-Tousi, S. S., & Szpunar, J. A. (2014). Mechanism of corrosion of activated aluminum particles by hot water. Electrochimica Acta, 127, 95105.Google Scholar
Risha, G. A., Connell, T. L. Jr, Yetter, R. A., Sundaram, D. S., & Yang, V. (2014). Combustion of frozen nanoaluminum and water mixtures. Journal of Propulsion and Power, 30(1), 133–42.Google Scholar
Risha, G., Huang, Y., Yetter, R., Yang, V., Son, S., & Tappan, B. (2006). Combustion of aluminum particles with steam and liquid water. 44th AIAA Aerospace Sciences Meeting and Exhibit, 1154.Google Scholar
Rosenband, V., & Gany, A. (2010). Application of activated aluminum powder for generation of hydrogen from water. International Journal of Hydrogen Energy, 35(20), 10898–904.Google Scholar
Sabourin, J. L., Risha, G. A., Yetter, R. A., Son, S. F., & Tappan, B. C. (2008). Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures. Combustion and Flame, 154(3), 587600.Google Scholar
Schiemann, M., Bergthorson, J., Fischer, P., Scherer, V., Taroata, D., & Schmid, G. (2016). A review on lithium combustion. Applied Energy, 162, 948–65.Google Scholar
Schmitt, M. M., Bowden, P. R., Tappan, B. C., & Henneke, D. (2018). Steady-state shock-driven reactions in mixtures of nano-sized aluminum and dilute hydrogen peroxide. Journal of Energetic Materials, 36(3), 266–77.Google Scholar
Seshadri, K., Berlad, A. L., & Tangirala, V. (1992). The structure of premixed particle-cloud flames. Combustion and Flame, 89(3–4), 333–42.Google Scholar
Setiani, P., Watanabe, N., Sondari, R. R., & Tsuchiya, N. (2018). Mechanisms and kinetic model of hydrogen production in the hydrothermal treatment of waste aluminum. Materials for Renewable and Sustainable Energy, 7(2), 113.Google Scholar
Shafirovich, E. Y., & Goldshleger, U. I. (1992). Combustion of magnesium particles in CO2/CO mixtures. Combustion Science and Technology, 84(1–6), 3343.Google Scholar
Shafirovich, E. Y., Shiryaev, A. A., & Goldshleger, U. I. (1993). Magnesium and carbon dioxide-A rocket propellant for Mars missions. Journal of Propulsion and Power, 9(2), 197203.Google Scholar
Sharma, R. A. (1996). A new electrolytic magnesium production process. JOM, 48(10), 3943.Google Scholar
Shevchuk, V. G., Boychuk, L. v, Goroshin, S. v, & Kostyshin, Y. N. (1993). Comparative research of the flame propagation in boron and Al, Mg, Zr, Fe dust clouds. International Journal of Energetic Materials and Chemical Propulsion, 2(1–6), 478484.Google Scholar
Shevchuk, V. G., Goroshin, S. v, Klyachko, L. A., Ageev, N. D., Kondrat’ev, E. N., & Zolotko, A. N. (1980). Flame propagation rate in gaseous suspensions of magnesium particles. Combustion, Explosion and Shock Waves, 16(1), 5258.Google Scholar
Shkolnikov, E. I., Zhuk, A. Z., & Vlaskin, M. S. (2011). Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews, 15(9), 4611–23.Google Scholar
Sippel, T. R., Pourpoint, T. L., & Son, S. F. (2013). Combustion of nanoaluminum and water propellants: Effect of equivalence ratio and safety/aging characterization. Propellants, Explosives, Pyrotechnics, 38(1), 5666.Google Scholar
Smith, D. K., Unruh, D. K., Wu, C.-C., & Pantoya, M. L. (2017). Replacing the Al2O3 shell on Al particles with an oxidizing salt, aluminum iodate hexahydrate. part I: reactivity. The Journal of Physical Chemistry C, 121(41), 23184–91.Google Scholar
Sohn, H. Y. (2008). Suspension hydrogen reduction of iron oxide concentrates. Salt Lake City, UT: University of Utah, https://doi.org/10.2172/929441.Google Scholar
Soo, M. J., Goroshin, S., Glumac, N., Kumashiro, K., Vickery, J., Frost, D. L., & Bergthorson, J. M. (2017). Emission and laser absorption spectroscopy of flat flames in aluminum suspensions. Combustion and Flame, 180, 230–38.Google Scholar
Soo, M. J., Kumashiro, K., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2017). Thermal structure and burning velocity of flames in non-volatile fuel suspensions. Proceedings of the Combustion Institute, 36(2), 2351–58.Google Scholar
Soo, M. J., Mi, X., Goroshin, S., Higgins, A. J., & Bergthorson, J. M. (2018). Combustion of particles, agglomerates, and suspensions – a basic thermophysical analysis. Combustion and Flame, 192, 384400.Google Scholar
Steinberg, T. A., Mulholland, G. P., Wilson, D. B., & Benz, F. J. (1992). The combustion of iron in high-pressure oxygen. Combustion and Flame, 89(2), 221–28.CrossRefGoogle Scholar
Steinberg, T. A., Wilson, D. B., & Benz, F. (1992). The combustion phase of burning metals. Combustion and Flame, 91(2), 200208.Google Scholar
Stoll, E., Härke, P, Linke, S., Heeg, F., & May, S. (2021). The regolith rocket – a hybrid rocket using lunar resources. Acta Astronautica, 179, 509–18.Google Scholar
Sun, J.-H., Dobashi, R., & Hirano, T. (1990). Combustion behavior of iron particles suspended in air. Combustion Science and Technology, 150(1–6), 99114.CrossRefGoogle Scholar
Sun, J.-H., Dobashi, R., & Hirano, T. (1998). Structure of flames propagating through metal particle clouds and behavior of particles. Proceedings of the Combustion Institute, 27(2), 2405–11.Google Scholar
Sundaram, D. S., Yang, V., Connell, T. L. Jr, Risha, G. A., & Yetter, R. A. (2013). Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures. Proceedings of the Combustion Institute, 34(2), 2221–28.Google Scholar
Svendsen, A. (2022). Elysis Moves Toward Commercialization of Inert Anodes. Light Metal Age, 3233. February 2022 issue. www.lightmetalage.com/magazine/2022/february-2022/Google Scholar
Tang, F.-D., Goroshin, S., & Higgins, A. J. (2011). Modes of particle combustion in iron dust flames. Proceedings of the Combustion Institute, 33(2), 1975–82.Google Scholar
Tang, F.-D., Higgins, A. J., Goroshin, S. (2009). Effect of discreteness on heterogeneous flames: propagation limits in regular and random particle arrays. Combustion Theory and Modelling 13(2), 319341Google Scholar
Tang, F.-D., Higgins, A. J., & Goroshin, S. (2012). Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources. Physical Review E, 85(3), 036311.Google Scholar
Tóth, P., Ögren, Y., Sepman, A., Gren, P., & Wiinikka, H. (2020). Combustion behavior of pulverized sponge iron as a recyclable electrofuel. Powder Technology, 373, 210–19.Google Scholar
Trowell, K. A., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2020a). Aluminum and its role as a recyclable, sustainable carrier of renewable energy. Applied Energy, 275, 115112.Google Scholar
Trowell, K. A., Goroshin, S., Frost, D. L., & Bergthorson, J. M. (2020b). The use of supercritical water for the catalyst-free oxidation of coarse aluminum for hydrogen production. Sustainable Energy & Fuels, 4(11), 5628–35.Google Scholar
Trowell, K. A., Wang, J., Wang, Y., Yavor, Y., Goroshin, S., Bergthorson, J. M., Frost, D. L., St-Charles, J. C., & Dubois, C. (2017). Effect of particle coating on the thermal response of mixtures of micro-and nano-aluminum particles with water. Journal of Thermal Analysis and Calorimetry, 127(1), 1027–36.Google Scholar
Vedder, W., & Vermilyea, D. A. (1969). Aluminum+ water reaction. Transactions of the Faraday Society, 65, 561–84.CrossRefGoogle Scholar
Vlaskin, M. S., Shkolnikov, E. I., Bersh, A. V., Zhuk, A. Z., Lisicyn, A. V., Sorokovikov, A. I., & Pankina, Y. V. (2011). An experimental aluminum-fueled power plant. Journal of Power Sources, 196(20), 8828–35.Google Scholar
Wang, H., Lu, J., Dong, S. J., Chang, Y., Fu, Y. G., & Luo, P. (2014). Preparation and hydrolysis of aluminum based composites for hydrogen production in pure water. Materials Transactions, 55(6), 892–98.Google Scholar
Wang, J., & Yang, Z. (2019). Effect of non-spherical particles on nozzle two-phase flow loss in nano-iron powder metal fuel motor. Aerospace Science and Technology, 91, 372–81.CrossRefGoogle Scholar
Waters, D. F., & Cadou, C. P. (2013). Modeling a hybrid Rankine-cycle/fuel-cell underwater propulsion system based on aluminum–water combustion. Journal of Power Sources, 221, 272–83.Google Scholar
Weaver, E. R. (1920). The generation of hydrogen by the reaction between ferrosilicon and a solution of sodium hydroxide. Industrial & Engineering Chemistry, 12(3), 232–40.Google Scholar
Weingärtner, H., & Franck, E. U. (2005). Supercritical water as a solvent. Angewandte Chemie International Edition, 44(18), 2672–92.Google Scholar
Wiinikka, H., Vikström, T., Wennebro, J., Toth, P., & Sepman, A. (2018). Pulverized sponge iron, a zero-carbon and clean substitute for fossil coal in energy applications. Energy & Fuels, 32(9), 9982–89.Google Scholar
Wolfhard, H. G., & Parker, W. G. (1948). Emissivity of small particles in flames. Nature, 162, 259.CrossRefGoogle Scholar
Woodall, J. M., Ziebarth, J. T., Allen, C. R., Sherman, D. M., Jeon, J., & Choi, G. (2009). Recent results on splitting water with aluminum alloys. Ceramic Transactions, 202, 121127.Google Scholar
Yabe, T., Yoshida, K., & Uchida, S. (2007). Demonstrated fossil-fuel-free energy cycle using magnesium and laser. International Congress on Applications of Lasers & Electro-Optics, 2007(1), M1103.Google Scholar
Yang, Y., Gai, W.-Z., Deng, Z.-Y., & Zhou, J.-G. (2014). Hydrogen generation by the reaction of Al with water promoted by an ultrasonically prepared Al(OH)3 suspension. International Journal of Hydrogen Energy, 39(33), 18734–42.Google Scholar
Yasuda, K., Nohira, T., Amezawa, K., Ogata, Y. H., & Ito, Y. (2005). Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2. Journal of the Electrochemical Society, 152(4), D69.Google Scholar
Yavor, Y., Goroshin, S., Bergthorson, J. M., & Frost, D. L. (2015). Comparative reactivity of industrial metal powders with water for hydrogen production. International Journal of Hydrogen Energy, 40(2), 1026–36.Google Scholar
Yavor, Y., Goroshin, S., Bergthorson, J. M., Frost, D. L., Stowe, R., & Ringuette, S. (2013). Enhanced hydrogen generation from aluminum–water reactions. International Journal of Hydrogen Energy, 38(35), 14992–5002.Google Scholar
Yeh, C.-L., & Kuo, K. K. (1996). Ignition and combustion of boron particles. Progress in Energy and Combustion Science, 22(6), 511–41.Google Scholar
Yetter, R. A., & Dryer, F. L. (2001). Metal particle combustion and classification. Microgravity Combustion: Fire in Free Fall, Ross, H. D. (ed.), 41978.Google Scholar
Young, D. J. (2008). High Temperature Oxidation and Corrosion of Metals (Vol. 1). Elsevier.Google Scholar
Zaseck, C. R., Son, S. F., & Pourpoint, T. L. (2013). Combustion of micron-aluminum and hydrogen peroxide propellants. Combustion and Flame, 160(1), 184–90.Google Scholar
Zhao, Q.-W., Liu, C.-L., Sun, Z., & Yu, J.-G. (2020). Analysing and optimizing the electrolysis efficiency of a lithium cell based on the electrochemical and multiphase model. Royal Society Open Science, 7(1), 191124.Google Scholar
Ziebarth, J. T., Woodall, J. M., Kramer, R. A., & Choi, G. (2011). Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. International Journal of Hydrogen Energy, 36(9), 5271–79.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×