Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T06:49:05.364Z Has data issue: false hasContentIssue false

Part III - Modern Era, Mid-Twentieth Century to the Present

Published online by Cambridge University Press:  13 December 2022

Louis R. Caplan
Affiliation:
Beth Israel Deaconess Medical Centre
Aishwarya Aggarwal
Affiliation:
John F. Kennedy Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stories of Stroke
Key Individuals and the Evolution of Ideas
, pp. 105 - 604
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Notes and References

Kussmaul, A. Zwi Falle spontaner allmaliger Verschliessung grosser Halsarterienstamme. Deutsch. Klin. 1872;24:461465.Google Scholar
Gowers, WR. On a case of simultaneous embolism of central retinal and middle cerebral arteries. Lancet 1875;2:794796.Google Scholar
Chiari, H. Uber das Verhalten des Tielungswinkels der Carotis communis bei der Endarteritis chronica deformans. Verhandl. deutschpath. Gesellsch. 1905;9:326330.Google Scholar
Chiari, Hans. Wikipedia. Available at https://en.wikipedia.org/wiki/Hans_Chiari.Google Scholar
Gowers, WR. A Manual of Diseases of the Nervous System, 2nd ed., vol. 2. Philadelphia: Blakiston’s Sons and Co., 1906, pp. 421429. Gowers’s textbook of neurology is discussed in Chapter 14.Google Scholar
Hunt, JR. The role of the carotid arteries in the causation of vascular lesions of the brain, with remarks on certain special features of the symptomatology. Am. J. Med. Sci. 1914;147:704771.CrossRefGoogle Scholar
Hunt, James Ramsay. Wikipedia. Available at https://en.wikipedia.org/wiki/James_Ramsay_Hunt.Google Scholar
Moniz, E, Lima, A, de Lacerda, R. Par thrombose de la carotide interne. Presse Med. 1937;45:977. Moniz’s contributions are discussed in detail in Chapter 31.Google Scholar
Sjöqvist, O. Über intrakranielle Aneurysmen der Arteria carotis und deren Beziehung zur ophthalmoplegischen Migräne. Nervenarzt 1936;9:233241.Google Scholar
Hultquist, GT, Jena, GF. Uber Thrombose und Embolie der Arteria carotis und hierbei vorkommende Gehirnstorungen.Google ScholarGoogle Scholar
Krayenbühl, H, Weber, G. Die Thrombose der Arteria carotis interna und ihre Beziehung zur Endangiitis obliterans v. Winiwarter-Buerger. Helvet. Med. Acta 1944;11:289333.Google Scholar
Johnson, HC, Walker, AE. The angiographic diagnosis of spontaneous thrombosis of the internal and common carotid arteries. J. Neurosurg. 1951;8:631639.CrossRefGoogle ScholarPubMed
Fisher, CM. Occlusion of the internal carotid artery. Arch. Neurol. Psychiatry 1951;65:346377. Miller Fisher and his career and contributions is the topic of Chapter 29.Google ScholarGoogle ScholarGoogle Scholar
Hollenhorst, RW. Significance of bright plaques in the retinal arterioles. JAMA 1961;178:123129.Google Scholar
Fisher, CM. Occlusion of the carotid arteries: Further experiences. Arch. Neurol. Psychiatry 1954;72:187204.Google Scholar
Mohr, J. Distal field infarction. Neurology 1969;19:279.Google Scholar
Fisher, CM. The microembolic theory of transient ischemic attacks. In Scheinberg, P (ed.), Proceedings of the 10th Princeton Conference for Cerebrovascular Diseases. New York: Raven Press, 1976, pp. 5053.Google Scholar
Pessin, MS, Duncan, GW, Mohr, JP, et al. Clinical and angiographic features of carotid transient ischemic attacks. N. Engl. J. Med. 1977;296:38362.CrossRefGoogle ScholarPubMed
Pessin, MS, Hinton, RC, Davis, KR, et al. Mechanisms of acute carotid stroke. Ann. Neurol. 1979;6:245252.Google Scholar
Caplan, LR, Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch. Neurol. 1998;55:14751482.Google ScholarGoogle Scholar
Fisher, CM. Facial pulses in internal carotid artery occlusion. Neurology 1970;20:476478.Google Scholar
Caplan, LR. The frontal artery sign: A bedside indicator of internal carotid occlusive disease. N. Engl. J. Med. 1973;288:10081009.Google Scholar
Imparato, AM, Riles, TS, Gorstein, F. The carotid bifurcation plaque: Pathologic findings associated with cerebral ischemia. Stroke 1979;10:238245.Google Scholar
Fisher, CM, Ojemann, RG. A clinico-pathologic study of carotid endarterectomy plaques. Rev. Neurol. (Paris) 1986;142:573589.Google Scholar
Spence, DJ, Hackam, DG. Treating arteries instead of risk factors: A paradigm change in management of atherosclerosis. Stroke 2010;41:11931199.Google Scholar
Baber, U, Mehran, R, Sartori, S, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: The BioImage study. J. Am. Coll. Cardiol. 2015 Mar 24;65(11):10651074.CrossRefGoogle ScholarPubMed
Kamel, H, Navi, BB, Merkler, AE, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque. Stroke 2020;51:504510.Google Scholar

Notes and References

Charcot, JM, Goetz, CG. Charcot, the clinician: The Tuesday lessons: Excerpts from nine case presentations on general neurology delivered at the Salpêtrière Hospital in 1887–88. In Charcot, JM. Lectures on the Diseases of the Nervous System. Trans. George Sigerson. London: Sydenham Society, 1877.Google Scholar
Ferrand, J. Essai sur l’hemiplegie des vieillards: les lacunes de desintegration cerebrale. Thesis, University of Paris, 1902.Google Scholar
Marie, P. Des foyers lacunaires de désintégration et des différents autres états cavitaires du cerveau. Revue de Médeciné (Paris) 1901;21:281298.Google ScholarGoogle Scholar
Hauw, J-J. The history of lacunes. In Donnan, G, Norrving, B, Bamford, J Bogousslavsky, J (eds.), Lacunar and Other Subcortical Infarcts. Oxford: Oxford University Press, 1995, pp. 315.Google Scholar
Dechambre, A. Mémoire sur la curabilité du ramollissement cérérebral. Gaz. Méd. Paris 1838;6:305314.Google Scholar
Durand-Fardel, M. Memoire sur une alteration particuliere de la substance cérébrale. Gaz. Méd. Paris 1842;10:2326, 33–38.Google Scholar
Durand-Fardel, M. Traite des ramollisements du cerveau. Paris: Bailliere, 1843.Google Scholar
Fisher, CM. Lacunes, small deep cerebral infarcts. Neurology 1965;15:774784.Google Scholar
Fisher, CM. The vascular lesion in lacunae. Transactions of the American Neurological Association 1965;90:243245.Google ScholarGoogle Scholar
Fisher, CM, Caplan, LR. Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971; 21:900905.Google ScholarGoogle Scholar
Caplan, LR. Intracranial branch atheromatous disease: A neglected, understudied and underused concept. Neurology 1989;39:12461250.Google Scholar
Clinical syndromes are discussed in Chapter 26 and are reported in Fisher, CM. Pure motor hemiplegia of vascular origin. Arch. Neurol. 1965;13:3044.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Poirier, J, Derouesné, C. Le concept de lacune cérébrale de 1838 à nos jours. Rev. Neurol. (Paris) 1985;141:317.Google Scholar
Poirier, J, Derouesné, C. Cerebral lacunae: A proposed new classification (letter). Clin. Neuropathol. 1984;3:266.Google Scholar
Besson, G. Les infarctus lacunaires, evaluation clinque et par l’imagerie par resonance magnetique. Thesis, University of Grenoble, 1989.Google Scholar
Fisher, CM. Lacunar infarcts – A review. Cerebrovasc. Dis. 1991;1:311320.Google ScholarGoogle ScholarGoogle Scholar
Wardlaw, JM, Smith, EE, Biessels, GJ, Cordonnier, C, Fazekas, F, Frayne, R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822838.CrossRefGoogle ScholarPubMed
Loos, CMJ, Makin, SDJ, Staals, J, Dennis, MS, van Oostenbrugge, RJ, Wardlaw, JM. Long-term morphological changes of symptomatic lacunar infarcts and surrounding white matter on structural magnetic resonance imaging. Stroke 2018;49(5):11831188.Google Scholar
Binswanger, O. Die abgrenzung der allgemeinen progressiven paralyse. Klin. Wochenschr. 1894;49:11031105; 1895;50:1137–1139; 1895;52:1180–1186.Google ScholarGoogle Scholar
Alzheimer, A. Die Seelenstorungen auf arteriosklerotischer grundlage. Z. Psych. 1902;59:695711.Google ScholarGoogle Scholar
Nissl, F. Zur kasuistic der artenoskleriotischen demenz. ein fall von sogenannten “encephalitis subcorticalis.” Z. Neurol. Psychiatr. 1920;19:438443.Google Scholar
Olszewski, J. Subcortical arteriosclerotic encephalopathy. Review of the literature on the so-called Binswanger’s disease and presentation of two cases. World Neurol. 1962;3:359375.Google ScholarPubMed
Caplan, LR, Schoene, WC. Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease). Neurology 1978;28:12061215.CrossRefGoogle ScholarPubMed
Caplan, LR. Binswanger’s disease revisited. Neurology 1995;45:626633.Google Scholar
Tournier-Lasserve, E, Joutel, A, Melki, J, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 1993;3:256259.Google ScholarGoogle Scholar
Yanagawa, S, Ito, N, Arima, K, Ikeda, S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 2002;58:817820.Google Scholar
Rosenberg, GA, Sullivan, N, Esiri, NM. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 2001;32:11621168.Google ScholarGoogle Scholar
Regenhardt, RW, Das, AS, Lo, EH, Caplan, LR. Advances in understanding the pathophysiology of lacunar stroke: A review. JAMA Neurol. 2018;75(10):12731281.Google Scholar
Caplan, LR. Microbleeds. Circulation 2015;132:479480.CrossRefGoogle ScholarPubMed

Notes and References

Sections and parts of this chapter have appeared in Caplan, LR. Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Scientific, 1996;Google ScholarGoogle ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affecto. Schaffhausen: J. Caspari Suteri, 1658.Google Scholar
Wolf, JK. The Classical Brain Stem Syndromes. Springfield, IL: Charles C. Thomas, 1971. The various brainstem syndromes are discussed in Chapter 10.Google Scholar
Wallenberg, A. Acute bulbaraffection (Embolie der art. cerebellar post. inf.sinistr.?). Arch. Psychiat. Nervenkr. 1895;27:504540.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Duret, H. Sur la distribution des arteres nouricierres du bulb rachidien. Arch. Physiol. Norm. Path. 1873 5:97113.Google ScholarGoogle Scholar
Stopford, JSB. The arteries of the pons and medulla oblongata. J. Anat. Physiol. 1916;50:131163, 255–280.Google ScholarPubMed
Caplan, LR. Charles Foix, the first modern stroke neurologist. Stroke 1990;21:348356. The career and contribution of Foix are the topic of Chapter 27.CrossRefGoogle Scholar
Kubik, C, Adams, R. Occlusion of the basilar artery: A clinical and pathologic study. Brain 1946;69:73121.Google Scholar
Hutchinson, EC, Yates, PO. The cervical portion of the vertebral artery, a clinicpathological study. Brain 1956;79:319331.Google ScholarGoogle Scholar
Fisher, CM. Occlusion of the vertebral arteries. Arch. Neurol. 1970;22:1319.CrossRefGoogle ScholarPubMed
Reivich, M, Holling, E, Roberts, B, Toole, JF. Reversal of blood flow through the vertebral artery and its effect on cerebral circulation. N. Engl. J. Med. 1961;265:878885.CrossRefGoogle ScholarPubMed
Hennerici, M, Klemm, C, Rautenberg, W. The subclavian steal phenomenon; a common vascular disorder with rare neurological deficits. Neurology 1988;88:669673.Google Scholar
Millikan, C, Siekert, R. Studies in cerebrovascular disease. The syndrome of intermittent insufficiency of the basilar arterial system. Mayo Clin. Proc. 1955;30:6168.Google ScholarGoogle ScholarGoogle Scholar
Millikan, C, Siekert, R, Shick, R. Studies in cerebrovascular disease: The use of anticoagulant drugs in the treatment of insufficiency or thrombosis within the basilar arterial system. Mayo Clin. Proc. 1955;30:116126.Google Scholar
Chimowitz, M, Lynn, MJ, Howlett-Smith, H, et al. for the Warfarin-Aspirin Symptomatic Intracranial Disease Trial investigators. Comparison of warfarin and aspirin for symptomatic Intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.Google Scholar
Denny-Brown, D. Basilar artery syndromes. Bull. N. Engl. Med. Center 1953;15:5360.Google ScholarPubMed
Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2014.Google Scholar
Caplan, LR, Chung, C-S, Wityk, RJ, et al. New England Medical Center posterior circulation stroke registry: I. Methods, data base, distribution of brain lesions, stroke mechanisms, and outcomes. J. Clin. Neurol. 2005;1:1430.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812.Google Scholar
Dana, CL. Acute bulbar paralysis due to hemorrhage and softening of the pons and medulla with reports of cases and autopsies. Med. Rec. 1903;64:361374.Google Scholar
Duret, H. Etudes experimentales et cliniques sur les traumatismes cerebraux. Paris: V. Adrien Delahayes, 1878.Google ScholarGoogle Scholar
Kornyey, S. Rapidly fatal pontine hemorrhage: Clinical and anatomical report. Arch. Neurol. Psychiatry 1939;41:793799.Google Scholar
Childs, T. A case of apoplexy of the cerebellum. Amer. Med. Month. 1858;9:13.Google Scholar
Mitchell, N, Angrist, A. Spontaneous cerebellar hemorrhage: Report of fifteen cases. Amer. J. Path. 1942;18:935953.Google Scholar
McKissock, W, Richardson, A, Walsh, L. Spontaneous cerebellar hemorrhage. Brain 1960;83:19.Google Scholar
Fisher, CM, Picard, EH, Polak, A, Dalal, P, Ojemann, R. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J. Nerv. Ment. Dis. 1965;140:3857.Google Scholar
Chung, C-S, Caplan, LR, Han, W, Pessin, MS, Lee, K-H, Kim, S-M. Thalamic haemorrhage. Brain 1996;119:18731886.Google Scholar

Notes and References

Two detailed biographies describe the main life events and accomplishments of Harvey Cushing: Fulton, J. Harvey Cushing: A Biography – The Story of a Great Medical Pioneer. Springfield, IL: Charles C. Thomas, 1946.Google ScholarGoogle Scholar
Cushing, H. Surgery of the head. In Keen, WW (ed.), Surgery: Its Principles and Practice. Philadelphia: WB Saunders, 1911.Google Scholar
Cushing, H. Tumors of the Nervus Acusticus and the Syndrome of the Cerebellopontile Angle. Philadelphia: WB Saunders, 1917.Google ScholarGoogle Scholar
Biographical information about Sir Charles Symonds was derived from the entry for Charles Symonds in Wikipedia. Available at https://en.wikipedia.org/wiki/Charles_Symonds. Shorvon, S, Compston, A. Queen Square: A History of the Natil Hospital and Its Institute of Neurology. Cambridge: Cambridge University Press, 2019, pp. 239249.Google ScholarGoogle Scholar
Symonds, C. Contributions to the clinical study of intracranial aneurysms, with Harvey Cushing. Guy’s Hospital Reports 1923;73:139158.Google ScholarGoogle Scholar
Symonds, C. Spontaneous subarachnoid haemorrhage. Quarterly Journal of Medicine 1924;18:93122.Google ScholarGoogle ScholarGoogle Scholar
Quincke, HI. Verhandlungen des Congresses Innere Medizin. Wiesbaden, 1891, 10:321331.Google ScholarGoogle Scholar
Froin, G. Les hémorrhagies sous-arachnoidïennes et le méchanism de l’hématolyse en général. Thesis, Hôpitaux de Paris, 1904.Google Scholar
Hippocrates’s work is described in Chapter 1 of this book. Clark, E. Apoplexy in the Hippocratic writings. Bulletin of the History of Medicine 1963;37:301314.Google ScholarGoogle ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affecto. Schaffhausen: J. Caspari Suteri, 1658. Wepfer’s contributions are described in Chapter 8.Google Scholar
Chapter 7 contains much more detail about Morgagni and his life, works, and influence. Morgagni, GB. The Seats and Causes of Diseases Investigated by Anatomy. Trans. Alexander, B.. London: Miller and Cadell, 1769.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812. Reprinted in The Classics of Neurology and Neurosurgery Library, Division of Gryphon editions, New York, 1986. Cheyne’s work is discussed in Chapter 8.Google Scholar
Abercrombie, J. Pathological and Practical Researches on Diseases of the Brain and Spinal Cord. Edinburgh: Waugh and Innes, 1828. Reprinted in The Classics of Neurology and Neurosurgery Library, Division of Gryphon editions, New York, 1993.Google Scholar
Bright, R. Reports of Medical Cases, Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy. vol. II: Diseases of the Brain and Nervous System. London: Longman, Rees, Orme, Brown, and Green, 1831. Bright and his work is described in more detail in Chapter 9.Google Scholar
Bright, R. Cases illustrative of the effects produced when the arteries and brain are diseased. Guy’s Hospital Reports 1836;1:916.Google Scholar
Biumi, F. Observations anatomicae, scholiis ilustratae. Observatio V. In Sandifort, E (ed.), Thesaurus dissertationum, vol. 3. Leyden: S et J Luchtmans, 1778, pp. 373379.Google Scholar
Blane, C. Case of aneurisms of the carotid arteries. Trans. Soc. Improv. Med. Chir. Knowledge (London) 1800;2.Google Scholar
The quote is from Gull, WW. Cases of aneurism of the cerebral vessels. Guy’s Hospital Reports 1859; 5:281304.Google ScholarGoogle Scholar
The topic of cerebral angiography is discussed in more detail in Chapter 25 and in Krayenbühl, H. History of cerebral angiography and its development since Egaz Moniz. In Egas Moniz Centenary: Scientific Reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz, 1977, pp. 6374.Google ScholarGoogle ScholarGoogle Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1953;39:368376.Google Scholar
Reviews of the natural history of aneurysmal SAH are found in Locksley, HB. Report of the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage: Sec. V, part II. Natural history of subarachnoid hemorrhage, intracranial aneurysms, and arteriovenous malformation. J. Neurosurg. 1966;25:321368.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Hunt, WE, Meagher, JN, Hess, RM. Intracranial aneurysm: A nine-year study. Ohio State Med. J. 1966 Nov;62(11):11681171.Google ScholarGoogle Scholar
Broderick, JP, Brott, TG, Duldner, JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994;25:13421347.Google ScholarGoogle Scholar
Mullan, S, Dawley, J. Antifibrinolytic therapy for intracranial aneurysms. J. Neurosurg. 1968 Jan;28(1):2123.Google ScholarGoogle Scholar
Crompton, MR. The pathogenesis of cerebral infarction following rupture of cerebral berry aneurysms. Brain 1964;87:491510.Google Scholar
Crompton, MR. Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 1963;86:301314.CrossRefGoogle ScholarPubMed
Chapter 29 discusses Fisher’s life and contributions to stroke. Fisher’s life story is described in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM, Roberson, GH, Ojemann, RG. Cerebral vasospasm with ruptured saccular aneurysm: The clinical manifestations. Neurosurgery 1977;1:245248.Google ScholarGoogle Scholar
Kistler, JP, Crowell, RM, Davis, KR, Heros, R, Ojemann, RG, Zervas, NT, Fisher, CM. The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology 1983;33:424437.CrossRefGoogle Scholar
Conway, LW, McDonald, LW. Structural changes of the intradural arteries following subarachnoid hemorrhage. J. Neurosurg. 1972;37:715723.Google ScholarGoogle ScholarGoogle Scholar
Heros, RC, Zervas, NT, Varsos, V. Cerebral vasospasm after subarachnoid hemorrhage: An update. Ann. Neurol. 1983;14:599608.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Pickard, JD, Murray, GD, Illingworth, R, et al. Effect of oral nimodipine in cerebral infarction and outcome after subarachnoid hemorrhage: British aneurysm nimodipine trial. BMJ 1981;298:636642.Google ScholarGoogle Scholar
Feigin, VL, Rinkel, GJE, Algra, A, et al. Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage: A systematic review. Neurology 1998;50:876883.Google Scholar
Higashida, RT, Halbach, VV, Cahan, LD, et al. Transluminal angioplasty for treatment of intracranial arterial vasospasm. J. Neurosurg. 1989;71:648653.Google ScholarGoogle Scholar
Chapter 34 discusses the history of ultrasound and of transcranial Doppler imaging. Aaslid, R (ed.). Transcranial Doppler Sonography. Wien: Springer-Verlag, 1986.CrossRefGoogle Scholar
Sloan, MA, Haley, EC, Kassell, NF, et al. Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989;391:15141518.Google ScholarGoogle ScholarGoogle Scholar
Graff-Radford, NR, Torner, J, Adams, HP, Kassell, NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. Arch. Neurol. 1989;46:744752.Google Scholar
Caplan, LR, Hurst, JW. Cardiac and cardiovascular findings in patients with nervous system diseases. In Caplan, LR, Hurst, JW, Chimowitz, MI (eds.), Clin. Neurocardiol. New York: Marcel Dekker, 1999, pp. 298312.Google Scholar
Lee, VH, Connolly, HM, Fulgham, JR, Manno, EM, Brown, RD Jr, Wijdicks, EF. Takotsubo cardiomyopathy in aneurismal subarachnoid hemorrhage: An underappreciated ventricular dysfunction. J. Neurosurg. 2006;105:264270.Google Scholar
Ciongoli, AK, Poser, CM. Pulmonary edema secondary to subarachnoid hemorrhage. Neurology 1972;22:867870.Google ScholarGoogle Scholar
Takaku, A, Shindo, K, Tanaki, S, et al. Fluid and electrolyte disturbances in patients with intracranial aneurysms. Surg. Neurol. 1979;11:349356.Google ScholarGoogle ScholarGoogle Scholar
Van Gijn, J, Kerr, RS, Rinkel, GJE. Subarachnoid haemorrhage. Lancet 2007;369:306318.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Rinkel, GJE, Djibuti, M, Algra, A, van Gijn, J. Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 1998;29:251256.Google ScholarGoogle ScholarGoogle Scholar
Van Gijn, J, van Dongen, KJ, Vermeulan, M, et al. Perimesencephalic hemorrhage: A nonaneurysmal and benign form of subarachnoid hemorrhage. Neurology 1985;35:483487.Google ScholarGoogle Scholar
Schievink, WI, Wijdicks, EFM. Pretruncal subarachnoid hemorrhage: An anatomically correct description of the perimesencephalic subarachnoid hemorrhage. Stroke 1997;28:2572.Google Scholar
Kumar, S, Goddeau, RP, Selim, MH, Thomas, A, Schlaug, G, Alhazzani, A, Searls, DE, Caplan, LR. Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.Google Scholar

Notes and References

Chapter 8 discusses writings about apoplexy in detail.Google Scholar
Grmek, MD. Les maladies à l’aube de la civilisation occidentale. Paris: Payot, 1994.Google Scholar
Poirier, J, Derouesné, C. Apoplexy and Stroke. Cambridge: Cambridge University Press, 1993.Google Scholar
Corvisier, JN. Santé et société en Grèce ancienne. Paris: Economica, 1985Google Scholar
Morgagni, G. De sedibus et causis morborum per anatomen indagates (The seats and causes of diseases investigated by anatomy). London: Millar and T. Cadell, 1769. Morgani’s life and contributions is the topic of Chapter 7.Google Scholar
Lidell, JA. A Treatise on Apoplexy, Cerebral Hemorrhage, Cerebral Embolism, Cerebral Gout, Cerebral Rheumatism, and Epidemic Cerebrospinal Meningitis. New York: William Wood and Co., 1873. Reprinted as part of the Classics of Neurology and Neurosurgery Library. Birmingham, AL: Gryphon Editions, 1990, quote on p. 128.Google Scholar
Charcot, JM, Bouchard, C. Nouvelle recherches sur la pathogenie de l’hemorrhagie cerebrale. Arch. Physiol. Norm. Pathol. 1868;1:110127, 634–665, 725–734.Google ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affect. Schaffhausen: J. Caspari Suteri, 1658.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812.Google Scholar
Dana, CL. Acute bulbar paralysis due to hemorrhage and softening of the pons and medulla with reports of cases and autopsies. Med. Rec. 1903;64:361374.Google Scholar
Gowers, WR. A Manual of Diseases of the Nervous System. London: J. and A. Churchill, 1893.Google Scholar
Osler, W. The Principles and Practice of Medicine, 5th ed. New York: D. Appleton and Co., 1903, pp. 9971008.Google Scholar
The story of the introduction of the sphygmomanometer into medical practice is discussed in Chapter 49.Google Scholar
Kornyey, S. Rapidly fatal pontile hemorrhage: Clinical and anatomic report. Arch. Neurol. Psychiatry 1939;41:793799.Google Scholar
The career and contributions including those related to ICH are covered in Chapter 29 and in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM. Pathology and pathogenesis of intracerebral hemorrhage in pathogenesis and treatment of cerebrovascular disease. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 295317.Google Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhages. J. Neuropathol. Exp. Neurol. 1971;30:536550.Google Scholar
Fisher, CM. Clinical syndromes in cerebral hemorrhage in pathogenesis and treatment of cerebrovascular disease. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 318342.Google Scholar
Fisher, CM, Picard, EH, Polak, A, Dalal, P, Ojemann, RG. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J. Nerv. Ment. Dis. 1965;140:3857.Google Scholar
Cole, F, Yates, P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1967;90:759768.Google Scholar
Rosenblum, WI. Miliary aneurysms and “fibrinoid’’ degeneration of cerebral blood vessels. Hum. Pathol. 1977;8:133139.Google Scholar
Mizukami, M, Araki, G, Mihara, H, Tomita, T, Fuginaga, R. Arteriographically visualized extravasation in hypertensive intracerebral hemorrhage; report of seven cases. Stroke 1972; 3: 527537.Google ScholarGoogle Scholar
Caplan, LR. Drugs. In Kase, CS, Caplan, LR (eds.), Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994, pp. 201220.Google Scholar
Caplan, LR, Neely, S, Gorelick, PB. Cold-related intracerebral hemorrhage. Arch. Neurol. 1984;41:227.Google Scholar
Barbas, N, Caplan, LR, Baquis, G, et al. Dental chair intracerebral hemorrhage. Neurology 1987;37:511512.Google ScholarGoogle Scholar
Haines, S, Maroon, J, Janetta, P. Supratentorial intracerebral hemorrhage following posterior fossa surgery. J. Neurosurg. 1978;49:881886.Google ScholarGoogle Scholar
Wilson, SAK, Bruce, AN. Neurology, 2nd ed. London: Butterworth, 1955, pp. 13671383.Google Scholar
Broderick, JP, Brott, TG, Tomsick, T, Barsan, W, Spilker, J. Ultra-early evaluation of intracerebral hemorrhage. J. Neurosurg. 1990; 72: 195199.Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage: Incidence and time course. Stroke 1996;27:17831787.Google ScholarGoogle Scholar
Oppenheim, G. Uber “drusige Nekrosen” in der Großhirnrinde. Neurol. Centralbl. 1909;28:410413.Google Scholar
Scholz, W. Studien zur pathologie der hirngefabe II: Die drusige entartung der hirnarterienundcapillaren. Z. gesamte Neurol. Psychiatr. 1938;162:694715.Google Scholar
Pantelakis, S. A particular type of senile angiopathy of the central nervous system: Congophilic angiopathy, topography and frequency. Monatsschr. Psychiatr. Neurol. 1954;128:219256.Google Scholar
Jellinger, K. Cerebral hemorrhage in amyloid angiopathy. Ann. Neurol. 1977;1:604.Google ScholarGoogle Scholar
Okazaki, H, Reagan, TJ, Campbell, RJ. Clinicopathologic studies of primary cerebral amyloid angiopathy. Mayo Clin. Proc. 1979;54(1):2231.Google Scholar
Greenberg, SM, Vonsattel, JP, Stakes, JW, Gruber, M, Finklestein, SP. The clinical spectrum of cerebral amyloid angiopathy: Presentations without lobar hemorrhage. Neurology 1993;43(10):20732079.Google Scholar
Knudsen, K, Rosand, AJ, Karluk, D, Greenberg, SM. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Neurology 2001;56(4):537539.Google Scholar

Notes and References

Hunter, W. Further observations upon a particular species of aneurysm. Observ. Inquiries 1762;2:390414.Google Scholar
Virchow, R. Die krankhaften Geschwulste. Berlin: Aug. Hirschwald, 1863, vol. 3, pp. 456461. Rudolph Virchow’s career and contributions are discussed in Chapter 13.Google Scholar
Steinheil, SO. Ueber einen Fall von varix aneurysmaticus im bereit der gehirngefoesse. Inaugural dissertation, Wurzburg, 1895.Google Scholar
Cushing, H, Bailey, P. Tumors Arising from the Blood-Vessels of the Brain. Angiomatous Malformations and Hemangioblastomas. Springfield, IL: Charles C. Thomas, 1928. Harvey Cushing is introduced in Chapter 18 on aneurysms and subarachnoid hemorrhages.Google Scholar
Dandy, WE. Arteriovenous aneurysm of the brain. Arch. Surg. 1928;17:190243.Google Scholar
Bucy, Paul C. Percival Bailey 1892–1973. Washington, DC: National Academy of Sciences, 1989.Google Scholar
Pool, JL. Arteriovenous malformations of the brain. In Vinken, PJ, Bruyn, GW (eds.) Handbook of Clinical Neurology, vol. 12, part II: Vascular Diseases of the Nervous System. Amsterdam: North-Holland, 1972, pp. 227266.Google Scholar
Moniz and his role in the introduction of cerebral angiography into clinical medicine are discussed in Chapter 31.Google Scholar
Paterson, JH, McKissock, W. A clinical survey of intracranial angiomas with special reference to their mode of progression and surgical treatment: A report of 110 cases. Brain 1956;79:233266.Google ScholarGoogle ScholarGoogle Scholar
Perret, G, Nishioka, H. Report on the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the Cooperative Study. J. Neurosurg. 1966;25:467490.Google Scholar
McCormick, William F., MD. Marquis Who’s Who Top Doctors. Available at https://marquistopdoctors.com/2019/07/01/william-f-mccormick/.Google Scholar
McCormick, WF. The pathology of vascular (“arteriovenous”) malformations. J. Neurosurg. 1966;24:807816.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Rigamonti, D, Hadley, M, Drayer, B, et al. Cerebral cavernous malformations: Incidence and familial occurrence. N. Engl. J. Med. 1988;319:343347.Google ScholarGoogle Scholar
Labauge, P, Denier, C, Bergametti, F, Tournier-Lasserve, E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6(3):237244.Google Scholar
Flemming, KD, Link, MJ, Christianson, TJH, Brown, RD Jr. Prospective hemorrhage risk of intracerebral cavernous malformations. Neurology 2012;78(9):632636.Google Scholar
Truwit, C. Venous angiomas of the brain: History, significance, and imaging findings. Am. J. Radiol. 1992;159:12991307.Google ScholarGoogle ScholarGoogle Scholar
Wilms, G, Bleus, E, Demaerel, P, et al. Simultaneous occurrence of developmental venous anomalies and cavernous angiomas. AJNR Am. J. Neuroradiol. 1994;15:12471254.Google ScholarGoogle Scholar
Kerber, CW, Newton, TH. The macro and microvasculature of the dura mater. Neuroradiology 1973;6:175179.Google Scholar
Castaigne, P, Bories, J, Brunet, P, et al. Les fistules arterio-veineuse meningees pures a drainage veineux cortical. Rev. Neurol. 1976;132:169181.Google ScholarGoogle Scholar
Houser, OW, Campbell, JK, Campbell, RJ. Arteriovenous malformation affecting the transverse dural venous sinus: An acquired lesion. Mayo Clin. Proc. 1979;54:651661.Google Scholar

Notes and References

Garcin, R, Pestel, M. Thrombophlébites cérébrales. Paris: Masson et Cie, 1949.Google Scholar
Ribes, MF. Des recherches faites sur la phlébite. Revue Médicale Française et Etrangère et Journal de Clinique de l’Hôtel-Dieu et de la Charité de Paris 1825;3:541.Google Scholar
Abercrombie, J. Pathological and Practical Researches on Diseases of the Brain and the Spinal Cord. Edinburgh, 1828.Google Scholar
Quinke, H. Ueber meningitis serosa und verwandte Zustande. Dtsch. Z. Nervenheilk. 1896;9:149168.Google Scholar
Hutinel, VH. Contribution à l’étude des troubles de la circulation veineuse chez l’enfant et en particulier chez le nouveau-né. V. Adrien Delahaye et Cie, 1877.Google Scholar
Von Hösslin, R. Die Schwangerschaftlähmungen der Mutter. Arch. für Psychiatrie 1904;38:779; 1905;40:445Google ScholarGoogle Scholar
Purdon Martin, J, Sheehan, HL. Primary thrombosis of cerebral veins (following childbirth). BMJ 1941 Mar 8:349–353.Google Scholar
Stansfield, FR. Puerperal cerebral thrombophlebitis treated by heparin. BMJ 1942 April 4;1(4239):436438.Google Scholar
Eagleton, WP. Cavernous Sinus Thrombophlebitis, and Allied Septic and Traumatic Lesions of the Basal Venous Sinuses. New York: Macmillan, 1926.Google Scholar
Fraser, JS. Septic otitic thrombosis of the cranial blood sinuses and jugular bulb. Edinb. Med. J. 1924 Apr;31(4):T75T89. PMID: 29647779; PMCID: PMC5305757.Google Scholar
Symonds, CP. Otitic hydrocephalus. Brain 1931;54, part I:5572.Google ScholarGoogle Scholar
Tonnellé, ML. Mémoire sur les maladies des sinus veineux de la dure-mère. J. hebd. Méd. 1829;5:337403.Google Scholar
Cruveilhier, J. Anatomie pathologique du corps humain: Descriptions avec figures lithographiées et caloriées des diverses alterations morbides dont le corps humain est susceptible. Paris: JB Bailliere, 1835–1842.Google Scholar
Von Dusch, T. On Thrombosis of the Cerebral Sinus. London: New Sydenham Society, 1861.Google Scholar
Ross, J. A Treatise on the Diseases of the Nervous System, 2nd ed., vol. 2. London, 1883, pp. 385390.Google Scholar
Kalbag, RM, Woolf, AL. Cerebral Venous Thrombosis, vol. 1. London: Oxford University Press, 1967.Google Scholar
Ray, BS, Dunbar, HS, Dotter, CT. Dural sinus venography as an aid to diagnosis in intracranial disease. J. Neurosurg. 1951;8(1):2337.Google Scholar
Moniz, E, Lima, A. Phlébographie cérébrale. Essai de détermination de la vitesse du sang dans les capillaires du cerveau chez l’homme. Comptes rendus des séances de la Société de biologie. Société de biologie de Lisbonne. Séance du 29 Janvier 1932, t CIX, p. 1037.Google ScholarGoogle Scholar
Krayenbühl, HA. Cerebral venous thrombosis; diagnostic value of cerebral angiography. Schweiz. Arch. Neurol. Psychiat. 1954;74:261287.Google ScholarGoogle Scholar
Bousser, MG, Chiras, J, Bories, J, Castaigne, P. Cerebral venous thrombosis: A review of 38 cases. Stroke 1985;16:199213.Google ScholarGoogle ScholarGoogle Scholar
Einhäupl, KM, Villringer, A, Haberl, RL, et al. Clinical spectrum of sinus venous thrombosis. In Einhäupl, K, Kempski, O, Baethmann, A (eds.), Cerebral Sinus Thrombosis. Boston: Springer, 1990, pp. 149155.Google Scholar
Einhäupl, KM, Villringer, A, Mehraein, S, et al. Heparin treatment in sinus venous thrombosis. Lancet 1991;338:597600.Google Scholar
Srinivasan, K. Cerebral venous and arterial thrombosis in pregnancy and puerperium. A study of 135 patients. Angiology 1983 Nov;34(11):731746.Google Scholar
Cantu, C, Barinagarrementeria, F. Cerebral venous thrombosis associated with pregnancy and puerperium. Review of 67 cases. Stroke 1993;24(12):18801884.CrossRefGoogle ScholarPubMed
Daif, A, Awada, A, Al-Rajeh, S, et al. Cerebral venous thrombosis in adults: A study of 40 cases from Saudi Arabia. Stroke 1995;26(7):11931195.Google Scholar
Preter, M, Tzourio, C, Ameri, A, Bousser, MG. Long-term prognosis in cerebral venous thrombosis: follow-up of 77 patients. Stroke 1996;27(2):243246.Google Scholar
de Bruijn, SF, de Haan, RJ, Stam, J. Clinical features and prognostic factors of cerebral venous sinus thrombosis in a prospective series of 59 patients. For the Cerebral Venous Sinus Thrombosis Study Group. J. Neurol. Neurosurg. Psychiatry 2001;70(1):105108.Google ScholarGoogle Scholar
Ferro, JM, Correia, M, Pontes, C, Baptista, MV, Pita, F. Cerebral vein and dural sinus thrombosis in Portugal: 1980–1998. Cerebrovascular Diseases 2001;11(3):177182.Google ScholarGoogle Scholar
The career and contributions of Gabrielle deVeber are discussed in detail in Chapter 40.Google Scholar
deVeber, G, Andrew, M, Adams, C, et al., Canadian Pediatric Ischemic Stroke Study Group. Cerebral sinovenous thrombosis in children. N. Engl. J. Med. 2001 Aug 9;345(6):417423.Google Scholar
Ferro, JM, Canhão, P, Stam, J, Bousser, MG, Barinagarrementeria, F, ISCVT Investigators. Prognosis of cerebral vein and dural sinus thrombosis: Results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004;35:664670.Google Scholar
Canhão, P, Ferro, JM, Lindgren, AG, Bousser, MG, Stam, J, Barinagarrementeria, F, ISCVT Investigators. Causes and predictors of death in cerebral venous thrombosis. Stroke 2005;36:17201725.Google Scholar
Ferro, JM, Bacelar-Nicolau, H, Rodrigues, T, et al. Risk score to predict the outcome of patients with cerebral vein and dural sinus thrombosis. Cerebrovasc. Dis. 2009;28(1):3944.Google Scholar
Canhão, P, Cortesão, A, Cabral, M, et al. Are steroids useful to treat cerebral venous thrombosis? Stroke 2008;39(1):105110.CrossRefGoogle ScholarPubMed
Kenet, G, Kirkham, F, Niederstadt, T, et al. Risk factors for recurrent venous thromboembolism in the European collaborative paediatric database on cerebral venous thrombosis: A multicentre cohort study. Lancet Neurol. 2007 Jul 1;6(7):595603.Google Scholar
Cotlarciuc, I, Marjot, T, Khan, MS, et al. Towards the genetic basis of cerebral venous thrombosis – The BEAST Consortium: A study protocol. BMJ Open 2016 Nov 1;6(11).Google Scholar
Duman, T, Uluduz, D, Midi, I, et al. A multicenter study of 1144 patients with cerebral venous thrombosis: The VENOST study. J. Stroke Cerebrovasc. Dis. 2017;26(8):18481857.Google Scholar
Wasay, M, Kaul, S, Menon, B, et al. Asian study of cerebral venous thrombosis. J. Stroke Cerebrovasc. Dis. 2019;28(10):104247.Google Scholar

Notes and References

Caplan, LR, Biller, J. Uncommon Causes of Stroke, 3rd ed. Cambridge: Cambridge University Press, 2017.Google Scholar
Nicholls, F. 1761. Observations concerning the body of His Late Majesty. Philos. Trans. Royal Soc. Lond. 1761;52:265275.Google Scholar
Shennan, T. Dissecting Aneurysms, Medical Research Council, Special Report Series 193. London: His Majesty’s Stationery Office, 1934.Google Scholar
Hirst, AE Jr, Johns, VJ, Kime, SW. 1958. Dissecting aneurysm of the aorta: A review of 505 cases. Medicine 1958;37:217279.Google Scholar
Moersch, FP, Sayre, GP. 1950. Neurologic manifestations associated with dissecting aneurysm of the aorta. JAMA 1950;144:11411148.Google Scholar
Ojemann, RG, Fisher, CM, Rich, JC. Spontaneous dissecting aneurysms of the internal carotid artery. Stroke 1972;3:434440.Google Scholar
Fisher, CM. Memoirs of a Neurologist, vol. 1. Rutland, VT: Sharp & Co. Printers, 2006, p. 157.Google ScholarGoogle Scholar
Caplan, LR, Zarins, CK, Hemmati, M. Spontaneous dissection of the extracranial vertebral arteries. Stroke 1985;16:10301038.Google ScholarGoogle ScholarGoogle Scholar
Caplan, LR: Dissections of brain-supplying arteries. Nat. Clin. Pract. Neurol. 2008;4:3442.Google ScholarGoogle ScholarGoogle Scholar
Biller, J, Sacco, RL, Albuquerque, FC, Demaerschalk, BM, Fayad, P, et al. Cervical arterial dissections and association with cervical manipulative therapy: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014;45:31553174.Google Scholar
Arnold, M, Sturznegger, M. Cervicocephalic arterial dissections. In Biller, J, Caplan, LR (eds.), Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2018, pp. 509533.Google Scholar
Chaves, C, Estol, C, Esnaola, MM, et al. Spontaneous intracranial internal carotid artery dissection. Arch. Neurol. 2002;59:977981.Google Scholar
Caplan, LR, Baquis, G, Pessin, MS, et al. Dissection of the intracranial vertebral artery. Neurology 1988;38:868879.Google ScholarGoogle Scholar
Caplan, LR, Estol, CJ, Massaro, AR. Dissection of the posterior cerebral arteries. Arch. Neurol. 2005;62:11381143.Google Scholar
Caplan, LR. Fibromuscular dysplasia in uncommon causes of stroke. In Biller, J, Caplan, LR (eds.), Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2018, pp. 575580.Google ScholarGoogle ScholarGoogle Scholar
McCormack, LJ, Hazard, JB, Poutasse, EF. Obstructive lesions of the renal artery associated with remediable hypertension. Amer. J. Pathol. 1958;34:582.Google Scholar
Palubinskas, AJ, Ripley, HR. Fibromuscular hyperplasia in extrarenal arteries. Radiology 1964;82:451455.Google Scholar
Sandok, BA. Fibromuscular dysplasia of the internal carotid artery. In Barnett, HJM (ed.), Neurologic Clinics, vol. 1. Philadelphia: Saunders, 1983, 1726.Google ScholarGoogle Scholar
Olin, JW, Froehlich, J, Gu, X, et al. The United States Registry for Fibromuscular Dysplasia: Results in the first 447 patients. Circulation 2012;125:31823190.Google Scholar
Yonekawa, Y, Handa, H, Okuno, T. Moyamoya disease: Diagnosis, treatment, and recent achievement. In Barnett, HJM, Mohr, JP, Stein, B, Yatsu, FM (eds.), Stroke: Pathophysiology, Diagnosis, and Management, vol. 2. New York: Churchill-Livingstone, 1986, pp. 805829.Google Scholar
Suzuki, J, Kowada, M, Asahi, M, Takaku, A. A study on disease showing singular cerebral-angiographical findings which seem to be new collateral circulation. Proceedings of the 22nd Meeting of the Japan Society, 1963.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Suzuki, J, Takaku, A, Kodama, N, et al. An attempt to treat cerebrovascular Moyamoya disease in children. Child Brain 1975;1:193206.Google Scholar
Bruno, A, Adams, HOP, Bilbe, J, et al. Cerebral infarction due to Moyamoya disease in young adults. Stroke 1988;19:826833.Google Scholar
Matsushima, T, Inoue, TK, Suzuki, SO, Inoue, T, Ikezaki, K, Fukui, M, et al. Surgical techniques and the results of a fronto-temporo-parietal combined indirect bypass procedure for children with Moyamoya disease: A comparison with the results of encephalo-duro arterio-synangiosis alone. Clin. Neurol. Neurosurg. 1997;99:123127.Google ScholarGoogle Scholar
Sainte-Rose, C, Oliveira, R, Puget, S, Beni-Adani, L, Boddaert, N, Thorne, J, et al. Multiple burr hole surgery for the treatment of Moyamoya disease in children. J. Neurosurg. 2006;105:437443.Google Scholar
Kamada, F, Aoki, Y, Narisawa, A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J. Hum. Genet. 2011;56(1):3440.Google Scholar
Raso, A, Biassoni, R, Mascelli, S, et al. Moyamoya vasculopathy shows a genetic mutational gradient decreasing from East to West. J. Neurosurg. Sci. 2020;64(2):165172.Google Scholar
Call, GK, Fleming, MC, Sealfon, S, Levine, H, Kistler, JP, Fisher, CM. Reversible cerebral segmental vasoconstriction. Stroke 1988;19(9):11591170.Google Scholar
Dodick, DW. Reversible segmental cerebral vasoconstriction (Call-Fleming syndrome): The role of calcium antagonists. Cephalalgia 2003;23(3):163165.Google Scholar
Singhal, AB. Cerebral vasoconstriction without subarachnoid blood: Associated conditions, clinical and neuroimaging characteristics. Ann. Neurol. 2002;52(3S):5960.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Ducros, A, Boukobza, M, Porcher, R, Sarov, M, Valade, D, Bousser, MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome: A prospective series of 67 patients. Brain 2007;130(12):30913101.Google ScholarGoogle Scholar
Bogousslavsky, J, Despland, PA, Regli, F, Dubuis, PY. Postpartum cerebral angiopathy: Reversible vasoconstriction assessed by transcranial Doppler ultrasound. Eur. Neurol. 1989;29:102105.Google Scholar

Notes and References

Malpighi, Marcello. De polypo cordis. Bologna, 1666.Google Scholar
Müller, Johannes. Handbuch der Physiologie des Menschen. 4 editions. Coblenz: J. Hölscher, 1835–1840.Google Scholar
Safavi-Abbasi, S, Reis, C, Talley, MC, et al. Rudolf Ludwig Karl Virchow: Pathologist, physician, anthropologist, and politician. Implications of his work for the understanding of cerebrovascular pathology and stroke. Neurosurg. Focus 2006 Jun 15;20(6):E1.Google Scholar
Dickson, BC. Venous thrombosis: On the history of Virchow’s Triad. University of Toronto Medical Journal 2004;166–171.Google Scholar
Virchow, Rudolf. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: A. Hirschwald, 1858.Google Scholar
Virchow, Rudolf. Über die akute Entzündung der Arterien. Arch. Path. Anat. Physiol. 1847;1:272378.Google Scholar
Schiller, F. Concepts of stroke before and after Virchow. Med. Hist. 1970;14:115131.Google Scholar
Schmidt, A. Neue Untersuchungen ueber die asserstoffesgerinnung. Pflügers Archiv für die gesamte Physiologie 1872;6:413538.Google Scholar
Ribatti, D, Crivellato, E. Giulio Bizzozero and the discovery of platelets. Leukemia Research 2007;31(10):13391341.Google Scholar
Boulton, F. A hundred years of cascading – Started by Paul Morawitz (1879–1936), a pioneer of haemostasis and of transfusion. Transfus. Med. 2006;16(1):110.CrossRefGoogle ScholarPubMed
Morawitz, P. Die Chemie der Blutgerinnung. Ergebnisse der Physiologie 1905;4:307423.Google Scholar
Dirckx, JH. Armand, J. Quick: Pioneer and prophet of coagulation research. Ann. Intern. Med. 1980;92(4):553558.Google Scholar
Ebel, EM. The Quick Tests: The Life and Work of Dr. Armand J. Quick. Blacksburg, VA: Pocahontas Press, 1995.Google Scholar
Quick, AJ. The development and use of the prothrombin tests. Circulation 1959;19(1):9296.Google Scholar
Rosenberg, RD, Aird, WC. Vascular-bed-specific hemostasis and hypercoagulable states. N. Engl. J. Med. 1999;340(20):15551564.Google Scholar
Bauer, KA. Inherited and acquired hypercoagulable states. In Loscalzo, J, Schafer, AK (eds.), Thrombosis and Hemorrhage, 2nd ed. Baltimore, MD: Williams & Wilkins, 1998, pp. 863900.Google Scholar
Dahlbäck, B, Carlsson, M, Svensson, PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc. Natl. Acad. Sci. USA 1993;90:10041008.Google Scholar
Bertina, RM, Koeleman, BP, Koster, T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369(6475):6467.Google Scholar
Voorberg, J, Roelse, J, Koopman, R, et al. Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V. Lancet 1994;343(8912):15351536.Google ScholarGoogle ScholarGoogle Scholar
Koster, MDT, Vandenbrouke, JPV, Rosendaal, FR, de Ronde, H, Bertina, RM. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993;342:15031506.Google Scholar
Rosendaal, FR, Koster, T, Vandenbroucke, JP, Reitsma, PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995;85(6):15041508.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, Bertina, RM. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996;88(10):36983703.Google Scholar
Leroyer, C, Mercier, B, Oger, E, et al. Prevalence of 20210 A allele of the prothrombin gene in venous thromboembolism patients. Thromb. Haemost. 1998;80(1):4951.Google Scholar
McCully, KS. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969;56(1):111128.Google Scholar
Carson, NAJ, Neill, DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch. Dis. Child 1962;37:505513.Google Scholar
Clarke, R, Daly, L, Robinson, K, et al. Hyperhomocysteinemia: An independent risk factor for vascular disease. N. Engl. J. Med. 1991;324(17):11491155.Google ScholarGoogle Scholar
Mudd, SH, Skovby, F, Levy, HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am. J. Hum. Genet. 1985;37:131.Google Scholar
Kang, SS, Zhou, J, Wong, PW, Kowalisyn, J, Strokosch, G. Intermediate homocysteinemia: A thermolabile variant of methylenetetrahydrofolate reductase. Am. J. Hum. Genet. 1988;43(4):414421.Google Scholar
Selhub, J, Jacques, PF, Wilson, PW, Rush, D, Rosenberg, IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993;270(22):26932698.Google Scholar
Svenungsson, E, Antovic, A. The antiphospholipid syndrome – often overlooked cause of vascular occlusions? J. Intern. Med. 2020;7(4):349372.Google Scholar
Mueller, JF, Ratnoff, O, Heinle, RW. Observations on the characteristics of an unusual circulating anticoagulant. J. Lab. Clin. Med. 1951;8(2):254261.Google Scholar
Conley, CL, Hartmann, RC. A hemorrhagic disorder caused by circulating anticoagulant in patients with disseminated lupus erythematosus. J. Lab. Clin. Invest. 1952;31:621622.Google ScholarGoogle Scholar
Hughes, GR, Asherson, RA, Khamashta, MA. Antiphospholipid syndrome: Linking many specialties. Ann. Rheum. Dis. 1989;48:355356.Google Scholar
de Groot, PG, Meijers, JCM. β(2)-Glycoprotein I: Evolution, structure and function. J. Thromb. Haemost. 2011;9(7):12751284.Google Scholar
Wilson, WA, Gharavi, AE, Koike, T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: Report of an international workshop. Arthritis Rheum. 1999;42:13091311.Google ScholarGoogle Scholar
Levine, JS, Ware Branch, D, Rauch, J. The antiphospholipid syndrome. N. Engl. J. Med. 2002;346(10):752763.Google Scholar
Ziporen, L, Goldberg, I, Arad, M, et al. Libman-Sacks endocarditis in the antiphospholipid syndrome: Immunopathologic findings in deformed heart valves. Lupus 1996;5(3):196205.Google Scholar
Provenzale, JM, Barboriak, DP, Allen, NB, Ortel, TL. Antiphospholipid antibodies: Findings at arteriography. AJNR Am. J. Neuroradiol. 1998;19:611616.Google Scholar
Levine, SR, Brey, RL, Tilley, BC, Thompson, JL, et al. Antiphospholipid antibodies and subsequent thrombo-occlusive events in patients with ischemic stroke. JAMA 2004;291:576584.Google Scholar
Urbanus, RT, Siegerink, B, Roest, M, Rosendaal, FR, et al. Antiphospholipid antibodies and risk of myocardial infarction and ischemic stroke in young women in the RATIO study: A case control study. Lancet Neurol. 2009;8:9981005.Google Scholar
Asherton, RA. The catastrophic antiphospholipid syndrome. J. Rheumatol. 1992;19:508512.Google Scholar
Bucciarelli, S, Espinosa, G, Cervera, R. The CAPS Registry: Morbidity and mortality of the catastrophic antiphospholipid syndrome. Lupus 2009;18(10):905912.Google Scholar

Notes and References

Wexler, B. Genetics and Genetic Engineering. Detriot, MI: Thomson/Gale Group, 2005.Google Scholar
Charles Darwin: Theory, Book & Quotes. Biography.com. Available at www.biography.com/scientist/charles-darwin.Google Scholar
Mendel, Gregor. Biography.com. Available at www.biography.com/scientist/gregor-mendel.Google Scholar
Edwards, AWF. G. H. Hardy (1908) and Hardy-Weinberg equilibrium. Genetics 2008;179(3):11431150.Google Scholar
Miko, I. Thomas Hunt Morgan and sex linkage. Nature Education 2008;1(1):143. Available at www.nature.com/scitable/topicpage/thomas-hunt-morgan-and-sex-linkage-452.Google Scholar
The Nobel Prize in Physiology or Medicine, 1983. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/1983/mcclintock/facts/.Google Scholar
The Discovery of the Double Helix, 1951–1953. National Library of Medicine. Profiles in Science: Francis Crick. Available at https://profiles.nlm.nih.gov/spotlight/sc/feature/doublehelix.Google Scholar
The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl. The Embryo Project Encyclopedia. Available at https://embryo.asu.edu/pages/meselson-stahl-experiment-1957-1958-matthew-meselson-and-franklin-stahl.Google Scholar
The Human Genome Project. Genome.gov. Available at www.genome.gov/human-genome-project.Google Scholar
CRISPR. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=CRISPR&oldid=1037242001. Nobel Prize in Chemistry 2020. NobelPrize.org. Available at www.nobelprize.org/prizes/chemistry/2020/press-release/. Isaacson, W. The Code Breaker. New York: Simon & Schuster, 2021.Google Scholar
Lindgren, A. Stroke genetics: A review and update. J. Stroke 2014 Sep;16(3):114123.Google Scholar
Debette, S, Caplan, L. Genetics of stroke. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 129144.Google Scholar
Rosand, Jonathan, MD. International Stroke Genetics Consortium. Available at www.strokegenetics.org/node/372.Google Scholar
What is the ISGC? International Stroke Genetics Consortium. Available at www.strokegenetics.org/what_is_isgc. Raffeld, MR, Debette, S, Woo, D. International Stroke Genetics Consortium Update. Stroke. 2016 Apr 1;47(4):11441145.Google Scholar
Chabriat, H, Joutel, A, Tournier-Lasserve, E, Bousser, MG. CADASIL: Yesterday, today, tomorrow. Eur. J. Neurol. 2020;27(8):15881595. The Discovery of CADASIL. BrainFacts.org. Available at www.brainfacts.org/Diseases-and-Disorders/Injury/2019/The-Discovery-of-CADASIL-040319.Google Scholar
Chabriat, H, Joutel, A, Dichgans, M, Tournier-Lasserve, E, Bousser, M-G. CADASIL. Lancet Neurol. 2009;8(7):643653.Google Scholar
Fukutake, T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J. Stroke Cerebrovasc. Dis. 2011;20(2):8593.Google Scholar
Bowler, JV, Hachinski, V.Progress in the genetics of cerebrovascular disease: Inherited subcortical arteriopathies. Stroke 1994;25(8):16961698.Google Scholar
Grand, MG, Kaine, J, Fulling, K, Atkinson, J, Dowton, SB, Farber, M, et al. Cerebroretinal vasculopathy: A new hereditary syndrome. Ophthalmology 1988;95(5):649659.Google Scholar
Autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=Autosomal_dominant_retinal_vasculopathy_with_cerebral_leukodystrophy&oldid=989941105.Google Scholar
Gould, DB, Phalan, FC, Breedveld, GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:11671171.Google ScholarGoogle Scholar
Lanfranconi, S, Markus, HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: A systematic review. Stroke 2010;41(8):e513e518.Google Scholar
Sickle cell disease. Wikipedia. Available at https://en.wikipedia.org/wiki/Sickle_cell_disease. Serjeant, GR. One hundred years of sickle cell disease. British Journal of Haematology 2010 Dec;151(5):425–429. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2010.08419.x.Google Scholar
Mehta, A, Beck, M, Linhart, A, Sunder-Plassmann, G, Widmer, U. History of lysosomal storage diseases: An overview. In Mehta, A, Beck, M, Sunder-Plassmann, G (eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford: Oxford PharmaGenesis, 2006. Available at www.ncbi.nlm.nih.gov/books/NBK11615/. Fabry disease. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=Fabry_disease&oldid=1037635440.Google Scholar
Pavlakis, SG, Phillips, PC, DiMauro, S, De Vivo, DC, Rowland, LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann. Neurol. 1984;16(4):481488.Google Scholar
Debette, S, Germain, DP. Neurologic manifestations of inherited disorders of connective tissue. Handb. Clin. Neurol. 2014;119:565576.Google Scholar
Cerebral amyloid angiopathy is also discussed in Chapter 19 on intracerebral cemorrhages. See also Biffi, A, Greenberg, SM. Cerebral amyloid angiopathy: A systematic review. J. Clin. Neurol. 2011;7(1):19.Google Scholar

Notes and References

Middlemore, R. A Treatise the Diseases of the Eye and Its Appendages. London: Longmans & Co., 1835, p. 303.Google ScholarGoogle Scholar
Friedenwald, H. The history of the invention and of the development of the ophthalmoscope. JAMA 1902;38;549552.Google Scholar
Gowers, W. A Manual and Atlas of Medical Ophthalmoscopy. London: Churchill, 1879.Google Scholar
Gowers, WR. General principles of the diagnosis of the diseases of the nervous system. Lancet 1892;139:403405; also cited inGoogle ScholarGoogle Scholar
C. Miller Fisher is the subject of Chapter 29. The history of his observations and research on visual loss and stroke and carotid artery disease is contained in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. Trans. Am. Neurol. Assoc. 1951;76:154158.Google Scholar
Fisher, CM: Occlusion of the internal carotid artery. Am. Med. Assoc. Arch. Neurol. Psych. 1951;65:346377.Google ScholarGoogle Scholar
Fisher, CM. Disease of carotid arteries: A clinico-pathological correlation. In Report of the Annual Meeting and Proceedings of the Royal College of Physicians and Surgeons of Canada. October 3–4, 1952, pp. 60–67.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. AMA Arch. Ophthalmol. 1952;47:167203.Google Scholar
Fisher, CM. Observations of the fundus oculi in transient monocular blindness. Neurology 1959;9:333347.Google Scholar
Hollenhorst, RW. Significance of bright plaques in the retinal arterioles. JAMA 1961;178:2329.Google ScholarGoogle Scholar
Carotid artery disease and its history are discussed in detail in Chapters 15, 29, 54, and 55.Google Scholar
Ross Russell, RW. Observations on the retinal blood vessels in monocular blindness. Lancet 1961;2:14221428.Google ScholarGoogle ScholarGoogle Scholar
Ross Russell, RW. Observations on intracranial aneurysms. Brain 1963;86:425442.Google ScholarGoogle ScholarGoogle Scholar
Gautier, J-C. Clinical presentation and differential diagnosis of amaurosis fugax. In Bernstein, EF (ed.), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp. 2442.Google Scholar
Atlee, WE. Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google ScholarGoogle Scholar
Hedges, TR. Ophthalmoscopic findings in internal carotid artery occlusion. Am. J. Ophthalmol. 1963;55:10071012.Google ScholarGoogle Scholar
Hayreh, SS. Chronic ocular ischemic syndrome in internal carotid artery occlusive disease. In Bernstein, EF (ed.), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp. 135158.Google ScholarGoogle Scholar
Fisher, CM. Dilated pupil in carotid occlusion. Trans. Am. Neurol. Assoc. 1966;91:230231.Google Scholar
Furlan, AJ, Whisnant, JP, Kearns, TP. Unilateral visual loss in bright light: An unusual symptom of carotid artery occlusive disease. Arch. Neurol. 1979;36: 675676.Google Scholar
Winterkorn, JM, Teman, AJ. Recurrent attacks of amaurosis fugax treated with calcium channel blockers. Ann. Neurol. 1991;30:423425.Google ScholarGoogle Scholar
Burger, SK, Saul, RF, Selhorst, JB, Thurston, SE. Transient monocular blindness caused by vasospasm. N. Engl. J. Med. 1991;325:870873.Google Scholar
Hayreh, SS. Anterior ischemic optic neuropathy. 1. Terminology and pathogenesis. Br. J. Ophthalmol. 1974;58:955963.Google Scholar
Glaser, J. The ischemic optic neuropathies. In Levin, L, Iessell, S (eds.), Principles and Practices of Ophthalmology, vol. 5: Neuroophthalmology, 2nd ed. Philadelphia: WB Saunders, 2000.Google Scholar
Hutchinson, Jonathan. Wikipedia. Available at https://en.wikipedia.org/wiki/Jonathan_Hutchinson.Google Scholar
Hutchinson, J. Diseases of the arteries. Arch. Surg. 1890;1:323333.Google ScholarGoogle Scholar
Capobianco, DJ, Swanson, JW. Historical vignette: Neurological contributions of Bayard T. Horton. Mayo Clin. Proceed. 1998;73(9):912915.Google Scholar
Horton, BT, Magath, TB, Brown, GE. An undescribed form of arteritis of the temporal vessels. Proc. Staff Meet. Mayo Clin. 1932;7:700701.Google ScholarGoogle ScholarGoogle Scholar

Notes and References

Brock, RC. The Life and Work of Astley Cooper. Edinburgh: E&S Livingstone, 1952. Astley Cooper. Wikipedia. Available at https://en.wikipedia.org/wiki/Astley_Cooper.Google ScholarGoogle Scholar
Pearce, JMS. Henry Charlton Bastian (1837–1915): Neglected neurologist and scientist. Eur. Neurol. 2010;63:7378.Google Scholar
Shorvon, S, Compston, A. Queen Square: A History of the National Hospital and its Institute of Neurology. Cambridge: Cambridge University Press, 2019, p. 107.Google Scholar
Bastian, HC. Special diseases of the spinal cord. In Quain, R (ed.), A Dictionary of Medicine: By Various Writers. London: Longmans, Green & Co., 1882, pp. 14791483.Google Scholar
Bastian, HC. Thrombotic softening of the spinal cord: A case of so-called “acute myelitis.” Lancet 1910;2:15311534.Google Scholar
McHenry, LC. Garrison’s History of Neurology. Springfield, IL: Charles C. Thomas, 1969, pp. 331332.Google Scholar
Spiller, WG. Thrombosis of the cervical anterior median spinal artery. J. Nerv. Ment. Dis. 1909;36:601613.Google Scholar
Chung, M-F. A study of thirty-four cases of rapidly developing syphilitic paraplegia. Arch. Derm. Syphilol. 1926;14(2):111121.Google Scholar
The works of Adamkiewitz and colleagues is described in Chapter 12 on vascular anatomy.Google Scholar
Erichsen, John E. On Concussion of the Spine. London: Longmans, Green and Co., 1875.Google Scholar
Blackwood, W. Discussion on vascular disease of the spinal cord. Proc. R. Soc. Med. 1958;51:543.Google Scholar
Bramwell, B. Diseases of the Spinal Cord, 2nd ed. New York: William Wood and Co., 1884.Google Scholar
Dana, CL. Textbook of Nervous Diseases, 4th ed. New York: William Wood and Co., 1897.Google Scholar
Osler, W. The Principles and Practice of Medicine, 5th ed. New York: D. Appleton and Co., 1903.Google Scholar
The topic of carotid artery disease is discussed in Chapters 15, 29, 54, and 55.Google Scholar
Duckett, S, Said, G. Jean Lapresle, MD (1921–2000). Neurology May 2001 May;56(9):1167.Google ScholarGoogle Scholar
Gruner, J, Lapresle, J. Étude anatomo-pathologique des médullopathies d’origine vasculaire. Rev. Neurol. 1962;107:592631.Google Scholar
Garland, H, Greenberg, J, Harriman, DGF. Infarction of the spinal cord. Brain 1966;89:645662.Google Scholar
The history about recognition of aortic dissection is discussed briefly in Chapter 22.Google Scholar
Moersch, FP, Sayre, GP. Neurologic manifestations associated with dissecting aneurysm of the aorta. JAMA 1950;144:11411148.Google Scholar
Hirst, AE Jr, Johns, VJ, Kime, SW. Dissecting aneurysm of the aorta: A review of 505 cases. Medicine 1958;37:217279.Google Scholar
Szilagyi, DE, Hageman, JH, Smith, RF, et al. Spinal cord damage in surgery of the abdominal aorta. Surgery 1978;83(1):3856.Google Scholar
Hamdy, A, Ramadan, ME, El Sayad, HF, et al. Spinal cord injury after thoracic endovascular aortic aneurysm repair. Can. J. Anaesth. 2017;64(12):12181235.Google Scholar
Brewer, LA, Fosburg, RG, Mulder, GA, Verska, JJ. Spinal cord complications following surgery for coarctation of the aorta: A study of 66 cases. J. Thoracic Cardiovasc. Surgery 1972;64(3):368381.Google ScholarGoogle Scholar
Caronna, J, Finkelstein, S. Neurologic syndromes after cardiac arrest. Stroke 1978;9:517520.Google ScholarGoogle Scholar
Azzarelli, B, Roessmann, U. Diffuse “anoxic” myelopathy. Neurology 1977;27:10491052.Google ScholarGoogle Scholar
Zülch, KJ, Kurth-Schumacher, R. The pathogenesis of “intermittent spinovascular insufficiency” (“spinal claudication of Dejerine”) and other vascular syndromes of the spinal cord. Vasc. Surg. 1970;4(2):116136.Google Scholar
Zulch, K. On the circulatory disturbances in the borderline zones of the cerebral and spinal vessels. In Greenfield, JG, Russell, D (eds.), Proceedings of the Second International Congress on Neuropathology, vol. 8. Amsterdam: Excerpta Medica, 1955, pp. 894895.Google ScholarGoogle Scholar
Huckman, M. Memorial: Giovanni Di Chiro (1926–1997). Am. J. Neuroradiol. 1998;19:10071010.Google Scholar
DiChiro, G, Doppman, JL, Ommaya, AK. Radiology of spinal cord arteriovenous malformations. Prog. Neurol. Surg. 1971;4:329354.Google ScholarGoogle ScholarGoogle Scholar
Animoff, Michael Jeffrey. Wikipedia. Available at https://en.wikipedia.org/wiki/Michael_Jeffrey_Aminoff.Google Scholar
Aminoff, MJ, Logue, V. Clinical features of spinal vascular malformations. Brain 1974; 97:197210.Google ScholarGoogle Scholar
Aminoff, MJ. Spinal Angiomas. Oxford: Blackwell, 1976.Google Scholar
Satran, R. Spinal cord infarction. Current concepts of cerebrovascular disease. Stroke 1987;22:1317.Google Scholar
Novy, J, Carruzzo, A, Maeder, P, Bogousslavsky, J. Spinal cord ischemia: Clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch. Neurol. 2006;63:11131120.Google Scholar
Caplan, LR, Massaro, A. Spinal cord vascular disease. In Caplan, LR (ed.), Caplan’s Stroke, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 534543.Google ScholarGoogle ScholarGoogle Scholar
Haribhai, HC, Bhigjee, AI, Bill, PL, et al. Spinal cord schistosomiasis: A clinical, laboratory and radiological study, with a note on therapeutic aspects. Brain 1991;114:709726.Google Scholar
Caplan, LR, Noronha, A, Amico, L. Syringomyelia and arachnoiditis. J. Neurol. Neurosurg. Psychiatry 1990;53:106113.Google Scholar
Brust, JCM. Stroke and substance abuse. In Caplan, LR (ed.), Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp. 365370.Google Scholar
Chang, CW, Donovan, DJ, Liem, LK, et al. Surfers’ myelopathy: A case series of 19 novice surfers with nontraumatic myelopathy. Neurology 2012;79(22):21712176.Google Scholar
Nakamoto, BK, Siu, AM, Hashiba, KA, Sinclair, BT, Baker, BJ, Gerber, MS, McMurtray, AM, Pearce, AM, Pearce, JW. Surfer’s myelopathy: A radiologic study of 23 cases. Am. J. Neurorad. 2013;34(12):23932398.Google Scholar

Notes and References

Caplan, LR. Charles Foix: The first modern stroke neurologist. Stroke 1990;21:348356.Google Scholar
Caplan, LR. Charles Foix (1882–1927). J. Neurology 2010;257:19411942.Google Scholar
Roussy, G. Charles Foix (1882–1927). Rev. Neurol. (Paris) 1927;43:44446.Google Scholar
Lévy-Valensi, . Charles Foix 1882–1927. Sem. Hop. Paris 1927;3:185189.Google Scholar
Freeman, W. Charles Foix. In Haymaker, W (ed.), The Founders of Neurology. Springfield, IL: Charles C. Thomas, 1953, pp. 286289.Google Scholar
Seilhean, D. Neuropathology in Pitie-Salpetriere hospital: Past, present, and prospect. Neuropathology 2020;40:313.Google Scholar
Walusinski, O, Tatu, L, Bogousslavsky, J. French neurologists during World War I. In Tatu, L, Bogousslavsky, J (eds.), War Neurology. Basel: Karger, 2016, vol. 38, pp. 107118.Google Scholar
Vinchon, J. L’oeuvre poetique de Charles Foix. Aesculape 1927;17:241251.Google Scholar
Guillain, G. L’oeuvre neurologique de Charles Foix. In Études neurologiques. Paris: Masson et Cie, 1933, ser. 5, pp. 439458.Google Scholar
Boucher, M. Charles Foix, sa vie, son œuvre. In Conférences Lyonnaises d’Histoire de la Neurologie et de la Psychiatrie. Lyon: Oberval, 1982.Google Scholar
Foix, C, Nicolesco, J. Les noyaux gris centraux et la region mesencephalo-sous-optique. Paris: Masson et Cie, 1925.Google Scholar
Sicard, JA, Foix, C. L’albumino reaction du liquide cephalorachidien; dissociation albumino-cytologique au cours des compressions rachidiennes. Presse Med. 1912;20:10131014.Google Scholar
Foix, C, Alajournine, T. La myelite necrotique subaigue. Rev. Neurol. (Paris) 1926;42:142.Google Scholar
Hillemand, P. Charles Foix (1882–1927) anatomical studies. Ann. Anal. Pathol. (Paris) 1927;4:530532.Google Scholar
Dejerine, J, Roussy, G. Le syndrome thalamique. Rev. Neurol. (Paris) 1906;14:521532.Google Scholar
Foix, C, Masson, A. Le syndrome de l’artère cerebrale posterieure. Presse Med. 1923;31:361365.Google Scholar
Foix, C, Hillemand, P. Role vraisemblable du splenium dans la pathogenie de l’alexie pure par lesion de la cerebrale posterieure. Bull. Mem. Soc. Med. Hopitaux Paris 1925;49:393395.Google Scholar
Dejerine, J. Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbal. C. R. Soc. Biol. (Paris) 1892;4:6190.Google Scholar
Foix, C, Hillemand, P. Irrigation de la protuberance. C. R. Soc. Biol. (Paris) 1925;92:3536.Google Scholar
Foix, C, Hillemand, P. Contribution a l’etude des ramollissements protuberantiels. Rev. Med. 1926;43:287305.Google Scholar
Foix, C, Hillemand, P. Les syndromes de la region thalamique. Presse Med. 1925;33:113117.Google Scholar
Foix, C, Hillemand, P, Schalit, I. Sur le syndrome lateral du bulbe et l’irrigation du bulbe superieur. Rev. Neurol. (Paris) 1925;41:160179.Google Scholar
Foix, C, Hillemand, P. Les artères de l’axe encephalique jusqu’au diencephale inclusivement. Rev. Neurol. (Paris) 1925;41:705739.Google Scholar
Foix, C, Hillemand, P. Les syndromes de l’artère cerebrale anterieure. Encephale 1925;20:209232.Google Scholar
Foix, C, Levy, M. Les ramollissements sylviens. Rev. Neurol. (Paris) 1927;43:151.Google Scholar
Foix, C, Chavany, H, Hillemand, P, Schiff-Wertheimer, M. Obliteration de l’artère choroidienne anterieure: Ramollissement de son territoire cerebral. Hemiplegie, hemianesthesie et hemianopsie. Bull. Soc. Ophtalmol. Fr. 1925;27:221223.Google Scholar
Foix, C, Schiff-Wertheimer, S. Revue d’oto-neuro-oculistique. In Schiff-Wertheimer, S (ed.), Les syndromes hémianopsiques dans le ramollissement cérébral. Paris: Gaston Doin et Cie, 1926, pp. 561584.Google Scholar
Foix, C, Hillemand, P, Ley, J. Relativement au ramollissement cerebral a sa frequence et a son siege, et a l’importance relative des obliterations artèrielles, completes ou incompletes dans sa pathogenie. Rev. Neurol. (Paris) 1927;43:217218.Google Scholar
Foix, C, Chavany, J-A, Marie, J. Diplégie facio-linguomastcatrice d’origine cortico sous-corticale sans paralysie du membres (contribution a l’étude de la localization des centres de la face du membre supérieure). Rev. Neurologique 1926;33:214219.Google Scholar
Fisher, CM. An unusual variant of acute idiopathic polyneuritis (syndrome of opthalmoplegia, ataxia, and areflexia). N. Engl. J. Med. 1956;255:5765.Google Scholar

Notes and References

Aring, CD, Merritt, HH. Differential diagnosis between cerebral hemorrhage and cerebral thrombosis: A clinical and pathological study of 245 cases. Arch. Intern. Med. (Chic). 1935;56(3):435456. doi:10.1001/archinte.1935.00170010023002.Google Scholar
Aring, CD. Differential diagnosis of cerebrovascular stroke. Arch. Intern. Med. 1964 113:195199.Google Scholar
Trufant, S, Asbury, A. Charles D. Aring (1904–1998). Annals of Neurology 1998;44;710.Google Scholar
Rowland, LP. H. Houston Merritt (1902–1979). Neurology 1979;29:277279.Google Scholar
Rowland, LP. The Legacy of Tracy J. Putnam and H. Houston Merritt: Modern Neurology in the United States. New York: Oxford University Press, 2009.Google Scholar

Notes and References

The biographical information in this chapter is from Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM. Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 1, p. 47.Google Scholar
Fisher, CM. Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 1, p. 49.Google Scholar
Fisher, CM. Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 1, p. 53.Google Scholar
Fisher, CM. Occlusion of the internal carotid artery. American Medical Association Archives of Neurology and Psychiatry 1951;65:346377.Google Scholar
Fisher, CM. Disease of carotid arteries: A clinico-pathological correlation. In Report of the Annual Meeting and Proceedings of the Royal College of Physicians and Surgeons of Canada. October 3–4, 1952, pp. 60–67.Google Scholar
Fisher, CM. Occlusion of the carotid arteries: Further experiences. American Medical Association Archives of Neurology and Psychiatry 1954;72:187204.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. Transactions of the American Neurological Association 1951;76:154158.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. AMA Archives of Ophthalmology 1952;47:167203.Google Scholar
Fisher, CM. Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 1, p. 132.Google Scholar
Fisher, CM. The neurological examination of the comatose patient. Acta Neurologica Scandinavica 1969;49(suppl 6):457.Google Scholar
Abnormalities of the pupil and eye movements are described in Fisher, CM. Oval pupils. Archives of Neurology 1980;37:502503.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Fisher, CM. Lacunes, small deep cerebral infarcts. Neurology 1965;15:774784.Google Scholar
Fisher, CM. The vascular lesion in lacunae. Transactions of the American Neurological Association 1965;90:243245.Google ScholarGoogle Scholar
Fisher, CM, Caplan, LR. Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971;21:900905.Google ScholarGoogle Scholar
Caplan, LR. Intracranial branch atheromatous disease: A neglected, understudied and underused concept. Neurology 1989;39:12461250.Google Scholar
Clinical syndromes were reported in Fisher, CM. Pure motor hemiplegia of vascular origin. Archives of Neurology 1965;13:3044.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Fisher, CM. Pathology and pathogenesis of intracerebral hemorrhage in pathogenesis and treatment of cerebrovascular disease. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 295317.Google ScholarGoogle Scholar
Fisher, CM, Picard, E, Polak, A, Dalal, P, Ojemann, R. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. Journal of Nervous and Mental Diseases 1965;140:3857.Google ScholarGoogle Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhages. Journal of Neuropathology and Experimental Neurology 1971;30:536550.Google Scholar
Fisher, CM, Roberson, GH, Ojemann, RG. Cerebral vasospasm with ruptured saccular aneurysm: The clinical manifestations. Neurosurgery 1977;1:245248.Google ScholarGoogle ScholarGoogle Scholar
Fisher, CM. Gore, I. Okabe, N. White, PD. Atherosclerosis of the carotid and vertebral arteries – Extracranial and intracranial. Journal of Neuropathology and Experimental Neurology 1965;24:455476.Google Scholar
Fisher, CM, Ojemann, RG. A clinico-pathological study of carotid endarterectomy plaques. Revue Neurologique (Paris) 1986;39:273299.Google Scholar
[Fisher, CM] A new vascular syndrome: “The subclavian steal.” New England Journal of Medicine 1961;265:912.Google Scholar
Fisher, CM, Ojemann, RG, Roberson, GH. Spontaneous dissection of cervicocerebral arteries. Canadian Journal of Neurological Science 1978;5:919.Google Scholar
Fisher, CM. Clinical syndromes in cerebral arterial occlusion. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 151181.Google ScholarGoogle Scholar
An account of Fisher’s publications and that of others on the topic of atrial fibrillation has been included in Caplan, LR. Atrial fibrillation, past and future: From a stroke non-entity to an over-targeted cause. Cerebrovascular Diseases 2018;45:149153.Google Scholar
Fisher, CM, The treatment of atrial fibrillation. Letter to the editor. Lancet 1972;299:1284.Google Scholar
Hinton, RC, Kistler, JP, Fallon, JT, Friedlich, AL, Fisher, CM. Influence of etiology of atrial fibrillation on incidence of systemic embolism. American Journal of Cardiology 1977;40:509513.Google Scholar
Fisher, CM. Headache in cerebrovascular disease. In Vinken, PJ, Bruyn, GW (eds.), Handbook of Clinical Neurology, vol. 5: Headaches and Cranial Neuralgias. Amsterdam: North Holland, 1968, pp. 124156.Google Scholar
Fisher, CM. Migraine accompaniments versus arteriosclerotic ischemia. Transactions of the American Neurological Association 1968;93:211213.Google Scholar
Fisher, CM. Late-life migrainous accompaniments as a cause of unexplained cerebral attacks. Charcot lecture, 1979, Hôpital de la Salpêtrière, 293–324.Google ScholarGoogle ScholarGoogle Scholar
Fisher, CM. An unusual case of migraine accompaniments with permanent sequellae. Headache 1986;26:266270.Google ScholarGoogle Scholar
Fisher, CM. Some neuro-ophthalmological observations. Journal of Neurology Neurosurgery and Psychiatry 1967;30:383392.Google Scholar
Fisher, CM. Oval pupils. Archives of Neurology 1980;37:502503.Google Scholar
Fisher, CM. Dilated pupil in carotid occlusion. Transactions of the American Neurological Association 1966;91:230231.Google Scholar
Fisher, CM. Ocular bobbing. Archives of Neurology 1964;11:543546.Google Scholar
Fisher, CM. Ocular palsy in temporal arteritis. Minnesota Medicine 1959;42:12581268, 1430–1437, 1617–1630.Google Scholar
Fisher, M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia, and areflexia). New England Journal of Medicine 1956;255:5765.Google Scholar

Notes and References

A longer account of the fellowship and Fisher’s career and contributions is found in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Bleich, HL. The computer as a consultant. New England Journal of Medicine 1971;284:141147.Google Scholar
Mohr, J, Caplan, L, Melski, J, Duncan, G, Goldstein, R, Kistler, J, Pessin, M, Bleich, H. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762.Google Scholar
Caplan, LR. Occlusion of the vertebral or basilar artery: Follow-up analysis of some patients with benign outcome. Stroke 1979;10:277282.Google ScholarGoogle Scholar
Caplan, L, Hier, D, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530540.Google ScholarGoogle Scholar
The Stroke Data Bank published many reports, among which were Foulkes, MA, Wolf, PA, Priced, TR, Mohr, JP, Hier, DB. The Stroke Data Bank: Design, methods, and baseline characteristics. Stroke 1988;19:547554.Google ScholarGoogle Scholar
Caplan, LR, Stein, RW. Stroke: A Clinical Approach. Boston: Butterworth, 1986.Google Scholar
Caplan, L, Banks, G, Thomas, C. Central nervous system complications of addiction of “T’s and Blues.” Neurology 1982;32:623628.Google ScholarGoogle Scholar
Jones, HR, Caplan, L, Come, P, et al. Cerebral emboli of paradoxical origin. Annals of Neurology 1983;13:314319.Google Scholar
Representative reports from the NEMC-P Circulation Registry include Caplan, LR, Chung, C-S, Wityk, RJ, et al. New England Medical Center posterior circulation stroke registry: I. Methods, data base, distribution of brain lesions, stroke mechanisms, and outcomes. Journal of Clinical Neurology 2005;1:1430.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Representative descriptions and reviews of brain infarcts: Caplan, LR, DeWitt, LD, Pessin, MS, Gorelick, PB, Adelman, LS. Lateral thalamic infarcts. Archives of Neurology 1988;45:959964.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
The early investigations of thrombolytic therapy are reviewed in del Zoppo, GJ, Poeck, K, Pessin, MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Annals of Neurology 1992;32:7886.Google ScholarGoogle ScholarGoogle Scholar
Barbut, D, Caplan, LR. Brain complications of cardiac surgery. Current Problems in Cardiology 1997;22(9):449480.Google ScholarGoogle ScholarGoogle Scholar
Savitz, SI, Dinsmore, J, Wu, J, Henderson, GV, Stieg, P, Caplan, L. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: A preliminary safety and feasibility study. Cerebrovascular Diseases 2005;20:101107.Google ScholarGoogle Scholar
Caplan, LR. Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Scientific, 1996.Google ScholarGoogle Scholar
Caplan, L. Posterior circulation ischemia: Then, now, and tomorrow. The Thomas Willis Lecture – 2000. Stroke 2000;31:20112013.Google ScholarGoogle Scholar
Gorelick, P, Caplan, L, Hier, D, Patel, D, Parker, S. Racial differences in the distribution of anterior circulation occlusive cerebrovascular disease. Neurology 1984;34:5459.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Caplan, L, Schoene, W. Clinical features of subcortical atherosclerotic encephalopathy (Binswanger disease). Neurology 1978;28:12061215.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Fisher, C.M. Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971;21:900905.Google ScholarGoogle Scholar
Caplan, LR, Hennerici, M. (Hypothesis) Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Archives of Neurology 1998;55:14751482.Google Scholar
Caplan, LR. Cardiac encephalopathy. (Current Treatment Options in) Cardiovascular Medicine 2004;6:171178.Google ScholarGoogle Scholar
Caplan, LR, Baquis, GD, Pessin, MS, et al. Dissection of the intracranial vertebral artery. Neurology 1988;38:867877.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Hinchey, JA, Chaves, CJ, Appignani, B, Breen, JC, Pao, L, Wang, A, Pessin, MS, Lamy, C, Mas, J-L, Caplan, LR. A reversible posterior leukoencephalopathy syndrome. New England Journal of Medicine 1996;334:494500.Google Scholar
Albers, G, Caplan, LR, Easton, JD, et al. Transient ischemic attack. Proposal for a new definition. New England Journal of Medicine 2002;347:17131716.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Editorial. TIAs: We need to return to the question, What is wrong with Mr. Jones? Neurology 1988;38:791793;Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Siderov, E, Feng, W, Caplan, LR. Stroke in pregnant and postpartum women. Expert Reviews in Cardiovascular Therapy 2011;9:12351247.Google ScholarGoogle ScholarGoogle Scholar
Caplan, L, Kleeman, F, Berg, S. Urinary retention probably secondary to herpes genitalis. New England Journal of Medicine 1977;297:920921.Google ScholarGoogle Scholar

Notes and References

Sicard, JA, Forestier, J. Méthode radiographique d’exploration de la cavité épidurale par la lipiodol. Rev. Neurol. 1921;28:12641266.Google Scholar
Dandy, WE. Ventriculography following injection of air into the cerebral ventricles. Ann. Surg. 1918;68:511. Walter Dandy and his career are discussed in Chapter 57 on brain aneurysm treatment.Google Scholar
Moniz, E. Confidências de um investigador científico. Lisbon: Ática, 1948 (reprint 1999).Google ScholarGoogle Scholar
Moniz, E. Trombosis y otras obstrucciones de las carotidas. Barcelona: Salvat, 1941.Google ScholarGoogle Scholar
Moniz, E. Diagnostique des tumeurs cérébrales ses applications et épreuve de l’encephalographie artérielle. Paris: Masson Éditeurs, 1931.Google Scholar
Moniz, E. l’angiographie cérébrale, ses applications et résultats en anatomie, physiologie et clinique. Paris: Masson Éditeurs, 1934.Google Scholar
Moniz, E. Tentatives opératoires dans le traitement de certaines sychoses. Paris: Masson Éditeurs, 1936.Google Scholar
Radner, S. Intracranial angiography via the vertebral artery: Preliminary report of a new technique. Acta Radiol. 1947;28(5–6):838842.Google Scholar
Radner, S. Vertebral angiography by catheterization: A new method employed in 221 cases. Acta Radiol. Suppl. 1951;87:1134.Google Scholar
Radner, S. Subclavian angiography by arterial catheterization: Visualization of metastatic tumor in the upper thoracic aperture. Acta Radiol. 1949;32(5–6):359364.Google Scholar
Bull, JW. A review of cerebral angiography. Proc. R. Soc. Med. 1949;42(11):880890.Google Scholar
The needle and the technique for its use was introduced by Paul New at Massachusetts General Hospital. New, PF, Baker, E. Technique of arterial puncture: A new needle-cannula for arteriography. J. Neurosurg. 1963;20:390396.Google Scholar
Doby, T. A tribute to Sven-Ivar Seldinger. AJR 1984;142:14.Google Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography: A new technique. Acta Radiol. 1953;39:368376.Google ScholarGoogle Scholar
Huckman, MS. In memoriam Juan Manuel Taveras (1919–2002). Am. J. Neuroradiol. 2002;23:10651068.Google Scholar
Taveras, JM, Wood, EH. Diagnostic Neuroradiology. Baltimore, MD: Williams & Wilkins, 1964.Google Scholar
Caplan, LR, Wolpert, S. Conventional cerebral angiography in occlusive cerebrovascular disease. In Wood, JH (ed.), Cerebral Blood Flow: Physiologic and Clinical Aspects. New York: McGraw-Hill, 1987, pp. 356384.Google Scholar
Therapeutic aspects of angiography are discussed in Chapters 55 (angioplasty and stenting), 56 (clot removal), 57 (aneurysms), and 59 (AVMs).Google Scholar

Notes and References

The Nobel Prize in Physiology or Medicine 1979. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/1979/ceremony-speech.Google Scholar
Klioze, . History of computerized tomography (CT scanner). Available at www.youtube.com/watch?v=9SUHgtREWQc.Google Scholar
Dandy, WE. Ventriculography following injection of air into the cerebral ventricles. Annals of Surgery 1918;68:511.Google Scholar
Dandy, WE. Roentgenography of the brain after the injection of air into the spinal canal. Annals of Surgery 1919;70:397403.Google Scholar
Robertson, EG. Some physical aspects of encephalography. Brain 1947;70:5974.Google ScholarGoogle Scholar
Moniz, E. L’encephalographie arterielle, son importance dans la localisation des tumeurs cerebrales. Revue Neurologique (Paris) 1927;2:7289.Google ScholarGoogle Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography: A new technique. Acta Radiologica 1953;39(5):368376.Google Scholar
The Scanner Story (part 1 of 2 of documentary covering early CT development). YouTube. Available at www.youtube.com/watch?v=u_R47LDdlZM.Google Scholar
Cormack, Allan M., Nobel Lecture: Early Two-Dimensional Reconstruction and Recent Topics Stemming from It. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/1979/cormack/lecture/.Google Scholar
Goodman, LR. The Beatles, the Nobel Prize, and CT scanning of the chest. Radiology Clinics of North America 2010;48:17.Google Scholar
Hounsfield, Godfrey N., Nobel lecture: Computed medical imaging. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/1979/hounsfield/lecture.Google Scholar
Mishra, SK, Singh, P. History of neuroimaging: The legacy of William Oldendorf. Journal of Child Neurology 2010;25:508517.Google ScholarGoogle Scholar
Ambrose, J. Computerized transverse axial scanning (tomography). 2. Clinical application. British Journal of Radiology 1973;46:10231047.Google Scholar
Hounsfield, GN. Computerized transverse axial scanning (tomography): Part I. Description of system. British Journal of Radiology 1973;46:10161022.Google Scholar
New, PFJ, Scott, WR, Schnur, JA, Davis, KR, Taveras, JM. Computerized axial tomography with the EMI scanner. Radiology 1974;110:109123.Google ScholarGoogle Scholar
Caplan, LR. Computed tomography and stroke. In McDowell, FH, Caplan, LR (eds.), Cerebrovascular Survey Report to the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS). Revised 1985, pp. 61–74.Google Scholar
Barber, PA, Demchuk, AM, Zhang, J, Buchan, AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000;355:16701674.Google ScholarGoogle ScholarGoogle Scholar
Tong, E, Wintermark, M. CTA-enhanced perfusion CT: An original method to perform ultra-low-dose CTA-enhanced perfusion CT. Neuroradiology 2014;56(11):955964.Google ScholarGoogle ScholarGoogle Scholar
Lev, MH, Nichols, SJ. Computed tomographic angiography and computed tomographic perfusion imaging of hyperacute stroke. Topics in Magnetic Resonance Imaging 2000;11(5):273287.Google ScholarGoogle Scholar
Lee, KH, Cho, S-J, Byun, HS, et al. Triphasic perfusion computed tomography in acute middle cerebral artery stroke: A correlation with angiographic findings. Archives of Neurology 2000;57:990999.Google ScholarGoogle Scholar
Menon, BK, Campbell, BC, Levi, C, et al. Role of imaging in current acute ischemic stroke workflow for endovascular therapy. Stroke 2015;46:14531461.Google ScholarGoogle Scholar
.Chatzikonstantinou, A, Krissak, R, Flüchter, S, Artemis, D, Schaefer, A, Schoenberg, SO, Hennerici, MG, Fink, C. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovascular Diseases 2012;33:322328.Google Scholar
Rubin, GD, Leipsic, J, Joseph Schoepf, U, Fleischmann, D, Napel, S. CT angiography after 20 years: A transformation in cardiovascular disease characterization continues to advance. Radiology 2014;271(3):633652.Google Scholar

References

Kinley, J, Damadian, R. Gifted Mind: The Dr. Raymond Damadian Story, Inventor of the MRI. Green Forest, AZ: Master Books, a Division of New Leaf Publishing Group, 2015.Google Scholar
Dawson, MJ. Paul Lauterbur and the Invention of MRI. Cambridge, MA: MIT Press, 2013.Google Scholar
Lauterbur, PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973;242:190191.Google Scholar
Lauterbur, PC. Magnetic resonance zeugmatography. Pure Appl. Chem. 1974;40(1–2):149157.Google Scholar
Mansfield, P. The Long Road to Stockholm: The Story of Magnetic Resonance Imaging – An Autobiography. Oxford: Oxford University Press, 2013.Google Scholar
The Nobel Prize in Physiology or Medicine 2003. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/2003/mansfield/facts/.Google Scholar
Dreizen, P. The Nobel Prize for MRI: A wonderful discovery and a sad controversy. Lancet 2004 Jan 3;363(9402):78.Google Scholar
Rinck, PA. The History of MRI. Berlin: ABW, 2003.Google ScholarGoogle Scholar
Sood, R, Moseley, M. Technical introduction to MRI. In Davis, S, Fisher, M, Warach, S (eds.), Magnetic Resonance Imaging in Stroke. Cambridge: Cambridge University Press, 2003, pp. 5567.Google Scholar
Kistler, JP, Buonanno, FS, DeWitt, LD, Davis, LD, Brady, KR, Brady, TJ, Fisher, CM. Vertebral-basilar posterior cerebral territory stroke delineation by proton nuclear magnetic resonance Imaging. Stroke 1984;15:417426.Google Scholar
Warach, S, Chien, D, Li, W, Ronthal, M, Edelman, RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:17171723.Google ScholarGoogle Scholar
Linfante, I, Llinas, RH, Caplan, LR, Warach, S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 1999;30:22632267.Google ScholarGoogle Scholar
The principles of magnetic resonance angiography (MRA) are discussed in Edelman, RR, Meyer, J. MR angiography of the head and neck: Basic principles and clinical applications. In Davis, S, Fisher, M, Warach, S (eds.), Magnetic Resonance Imaging in Stroke. Cambridge: Cambridge University Press, 2003, pp. 85101.Google Scholar
The first publication of MRA was Wedeen, VI, Meuli, RA, Edelman, RR, Frank, LR, Brady, TJ, Rosen, BR. Projective imaging of pulsatile flow with magnetic resonance. Science 1985;230:946948.Google Scholar
Edelman, RR, Mattle, HP, Wallner, B, Bajakian, R, Kleefield, J, Kent, C, Skillman, JJ, Mendel, JB, Atkinson, DJ. Extracranial carotid arteries: Evaluation with “black blood” MR angiography. Radiology 1990;177:4550.Google ScholarGoogle ScholarGoogle Scholar
Warach, S, Li, W, Ronthal, M, Edelman, R. Acute cerebral ischemia: Evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 1992;182:4147.Google Scholar
Rother, J, Guckel, F, Neff, W, Schwartz, A, Hennerici, M. Assessment of regional cerebral blood flow volume in acute human stroke by use of a single-slice dynamic susceptibility contrast-enhanced magnetic resonance imaging. Stroke 1996;27:10881093.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Wang, Z, Wang, J, Connick, TJ, et al. Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T. Magn. Reson. Med. 2005;54:732737.Google ScholarGoogle ScholarGoogle Scholar
Kleinman, JT, Zaharchuk, G, Mlynash, M, et al. Automated perfusion imaging for the evaluation of transient ischemic attack. Stroke 2012;43:15561560.Google Scholar
Lansberg, MG, Lee, J, Christensen, S, et al. RAPID Automated Patient Selection for Reperfusion Therapy: A pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Stroke 2011;42:16081614.Google Scholar

References

Biography of Christian Doppler, Mathematician and Physicist. ThoughtCo.com. www.thoughtco.com/christian-doppler-biography-4174714.Google Scholar
Eden, A. The Search for Christian Doppler. Wien: Springer-Verlag, 1992.Google Scholar
Eden, A. Christian Doppler: Leben und Werk. Salzburg: Landespressebureau, 1988Google Scholar
Doppler, C. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abh. Kgl. Böhm Ges. Wissensch. (Prag.) 1842:465–482.Google Scholar
Houdas, Y. Doppler, Buys-Ballot, Fizeau. Historical note on the discovery of the Doppler’s effect. Ann. Cardiol. Angéiol. 1991;40(4):209213. PMID 2053764.Google Scholar
Shampo, MA, Kyle, RA. Karl Theodore Dussik: Pioneer in ultrasound. Mayo Clin. Proc. 1995;70:1136.Google Scholar
Fields, WS, Lemak, NA. The History of Stroke. New York: Oxford University Press, 1989, pp. 129149.Google Scholar
Franklin, DL, Schlegel, WA, Rushner, RF. Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 1961;134:564565.Google Scholar
Veyrat, C. Cardiovascular applications of the Doppler technique: A long way from birth to scientific acceptance. J. Am. Soc. Echocardiogr. 1999;12:278284.Google Scholar
Satomura, S, Tamura, A, Kido, Y. Study of blood flow in vessels by ultrasonics. Abst. Meeting Acoust. Soc. Jpn. 1958 Oct:81–82.Google Scholar
Satomura, S. Study of the flow patterns in peripheral arteries by ultrasonics. J. Acoust. Soc. Jpn. 1959;15:151158.Google Scholar
Kato, K, Kido, Y, Motomiya, M, Kaneko, Z, Kotani, H. On the mechanism of generation detected sound in ultrasonic flowmeter. Memoirs Inst. Sci. Res. Osaka Univ. 1962;19:5157.Google Scholar
Spencer, MP, Cambell, SD, Sealey, JL, Henry, FC, Lindbergh, J. Experiments on decompression bubbles in the circulation using ultrasonic and electromagnetic flow meters. J. Occupational Med. 1969;11:3844.Google Scholar
Seidel, S. Merrill P. Spencer, M.D. 1922–2006 eulogy. J. Neuroimaging 2007;17:13.Google Scholar
Toole, JF. In memorium. William Markley McKinney (1930–2003). Neurology 2004;62:536537.Google Scholar
Barber, FE, Baker, DW, Nation, AW, Strandness, DE Jr, Reid, JM. Ultrasonic duplex echo-Doppler scanner. IEEE Trans. Biomed. Eng. 1974;21:109113.Google Scholar
Strandness, DE. Duplex Scanning in Vascular Disorders. New York: Raven Press, 1990.Google Scholar
Reid, JM, Spencer, MP. Ultrasonic Doppler technique for imaging blood vessels. Science 1972;176:12351236.Google Scholar
Spencer, MP, Reid, JM. Quantitation of carotid stenosis with continuous wave Doppler ultrasound. Stroke 1979;10:326330.Google Scholar
Alexandrov, AV. The Spencer’s curve: Clinical implications of a classic hemodynamic model. J. Neuroimaging 2007;17:610.Google Scholar
Aaslid, R, Markwalder, TM, Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurgery 1982;57:769774.Google Scholar
Bribakk, AO. Career perspective: Alf O. Brubakk – Looking back to see ahead. Extrem. Physiol. Med. 2025;4:4. https://doi.org/10.1186/s13728–015-0023-z.Google Scholar
Aaslid, R (ed.). Transcranial Doppler Sonography. Wien: Springer-Verlag, 1986.Google Scholar
Sloan, MA, Alexandrov, AV, Tegeler, CH, Spencer, MP, Caplan, LR, Feldmann, E, et al. Assessment: Transcranial Doppler ultrasonography: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2004;62:14681481.Google Scholar
Griewing, B, Doherty, C, Kessler, CH. Power Doppler ultrasound examination of the intracerebral and extracerebral vasculature. J. Neuroimaging 1996;6:3235.Google Scholar
Bartels, E. Color-Coded Duplex Ultrasonography of the Cerebral Vessels. Stuttgart: Schattauer, 1998.Google ScholarGoogle ScholarGoogle Scholar
Bogdahn, U, Becker, G, Schlief, R, et al. Contrast-enhanced transcranial color-coded real-time sonography. Stroke 1993;24:676684.Google Scholar
Schoning, M, Buchholz, R, Walter, J. Comparative study of transcranial color duplex sonography and transcranial Doppler sonography in adults. J. Neurosurgery 1993;78:776784.Google Scholar
Becker, G, Seufert, J, Bogdahn, U, Reichmann, H, Reiners, K. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 1995 Jan;45(1):182184.Google Scholar
Padayachee, TS, Bishop, CCR, Gosling, RG, et al. Monitoring middle cerebral artery blood flow velocity during carotid endarterectomy. Br. J. Surg. 1986;73:98100.Google Scholar
Steiger, HJ, Schaffler, L, Boll, J, Liechti, S. Results of microsurgical carotid endarterectomy: A prospective study with transcranial Doppler and EEG monitoring, and selective shunting. Acta Neurochir. (Wien) 1989;100:3138.Google Scholar
Spencer, MP, Thomas, GI, Nicholls, SC, Sauvage, LR. Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke 1990;21:415423.Google Scholar
Ackerstaff, RGA, Janes, C, Moll, FL, et al. The significance of emboli detection by means of transcranial Doppler ultrasonography monitoring in carotid endarterectomy. J. Vas. Surg. 1995;21:415423.Google Scholar
Moehring, MA, Spencer, MP. Power M-mode transcranial Doppler ultrasound and simultaneous single gate spectrogram. Ultrasound Med. Biology 2002;28:4957.Google Scholar
Wong, KS, Li, H, Chan, YL, Ahuja, A, et al. Use of transcranial Doppler ultrasound to predict outcome in patients with intracranial large-artery occlusive disease. Stroke 2000;31(11):26412647.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Aaslid, R, Newell, DW, Stooss, R, Sorteberg, W, Lindegaard, KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 1991;22(9):11481154.Google Scholar
Newell, DW, Aaslid, R, Lam, A, Mayberg, TS, Winn, HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 1994;25(4):793797.Google Scholar
Piepgras, A, Schmiedek, P, Leinsinger, G, et al. A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke 1990;21:13061311.Google ScholarGoogle ScholarGoogle Scholar
Yonas, H, Smith, HA, Durham, SR, Pentheny, SL, Johnson, DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J. Neurosurgery 1993;79:483489.Google Scholar
Alexandrov, AV, Sharma, VK, Lao, AY, Tsivgoulis, G, Malkoff, MD, Alexandrov, AW. Reversed Robin Hood syndrome in acute ischemic stroke patients. Stroke 2007;38:30453048.Google Scholar
Becker, G, Bogdahn, U, Gehlberg, C, et al. Transcranial color-coded real-time sonography of intracranial veins: Normal values of blood flow velocities and findings in superior sagittal sinus thrombosis. J. Neuroimaging 1995;5:8794.Google ScholarGoogle Scholar
Valdueza, JM, Schultz, M, Harms, L, Einhäupl, KM. Venous transcranial Doppler ultrasound monitoring in acute dural sinus thrombosis: Report of two cases. Stroke 1995;26:11961199.Google ScholarGoogle Scholar
Polak, JF. Ultrasound energy and the dissolution of thrombus. N. Engl. J. Med. 2004;18(351):21542155.Google Scholar
Alexandrov, AV, Demchuk, AM, Felberg, RA, et al. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-Mhz transcranial Doppler monitoring. Stroke 2000;31:610614.Google ScholarGoogle Scholar
Adams, R, McKie, V, Nichols, F, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N. Engl. J. Med. 1992;326:605610.Google ScholarGoogle ScholarGoogle Scholar
Howard, G, Baker, WH, Chambless, LE, Howard, VJ, Jones, AM, Toole, JF. An approach for the use of Doppler ultrasound as a screening tool for hemodynamically significant stenosis (despite heterogeneity of Doppler performance). A multicenter experience. Asymptomatic Carotid Atherosclerosis Study Investigators. Stroke 1996;27:19511957.Google Scholar
Eliasziw, M, Rankin, RN, Fox, AJ, Haynes, RB, Barnett, HJ. Accuracy and prognostic consequences of ultrasonography in identifying severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke 1995;26:17471752.Google Scholar
Ringelstein, EB. Skepticism toward carotid ultrasonography: A virtue, an attitude, or fanaticism? Stroke 1995 Oct;26(10):17431746.Google Scholar
Markus, HS, Droste, DW, Kaps, M, et al. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: The Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 2005;111(17):22332240.Google Scholar
Markus, HS, King, A, Shipley, M, et al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): A prospective observational study. Lancet Neurol. 2010;9(7):663671.Google Scholar
Alexandrov, AV, Molina, CA, Grotta, JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N. Engl. J. Med. 2004;351:21702178.Google Scholar
Alexandrov, AV, Köhrmann, M, Soinne, L, et al., CLOTBUST-ER Trial Investigators. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: A multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol. 2019;18:338347.Google Scholar
Information is found on the website of the organization (www.asnweb.org). Charles Tegeler of Wake Forest University and Andrei Alexandrov served as directors for 30 years. The ASN also developed and successfully launched neurovascular specialist examinations for sonographers under the leadership of Alexander Razumovsky.Google Scholar
The organizers of the first and subsequent meetings included an illustrious group of ultrasound experts who focused their research on stroke: E. Bernd Ringelstein, Jurgen Klingelhofer, Eva Bartels (Germany), and Rob G. A. Ackerstaff (Netherlands).Google Scholar
Neurosurgeons: Karl Frederick Lindegaard (Oslo), Albrecht G. Harders (Freiburg), David Newell (Seattle), and Neil Martin (Los Angeles); neurologists: Gerhard-Michael von Reutern (Bad Nauheim), Michael Hennerici (Mannheim), Manfred Kaps (Giessen, Germany), Michael Sloan (Baltimore), Elietta Zanette (Rome), Viken Babikian (Boston), J. Phillip Kistler (Boston), Brian Chambers (Melbourne), Nathan Bornstein (Israel), Jean-Pierre Touboul (Paris), Mattthias Sturznegger (Switzerland), and Laszlo Csiba (Debrecen); vascular surgeons: Andrew Nicolaides (London), Ali F. AbuRhama (Charlottesville), and Tanja Rundek (Miami); radiologists: Ed Bluth (New Orleans), Daniel O’Leary (Boston), and Ed Grant (Los Angeles). And Katsuro Tachibana (Fukuoka), Hiroshi Furuhata (Tokyo), Fabienne Perren (Geneva), Georgios Tsivgoulis (Greece), Jurgen Klingelhoffer (Germany), Leandra Pourcelot (France), and R. G. A. Ackerstaff (Utrecht, Netherlands).Google Scholar

Notes and References

Rich, DA. A brief history of positron emission tomography. J. Nucl. Med. Technol. 1997 Mar 1;25(1):411.Google Scholar
Baron, J-C, Jones, T. Oxygen metabolism, oxygen extraction and positron emission tomography: Historical perspective and impact on basic and clinical neuroscience. NeuroImage 2012 Jun 1;61(2):492504.Google Scholar
Portnow, LH, Vaillancourt, DE, Okun, MS. The history of cerebral PET scanning. Neurology 2013 Mar 5;80(10):952956.Google Scholar
Raichle, ME. A brief history of human brain mapping. Trends Neurosci. 2009 Feb 1;32(2):118126.Google Scholar
Roy, CS, Sherrington, CS. On the regulation of the blood-supply of the brain. J. Physiol. 1890 Jan;11(1–2):85158.Google Scholar
Fulton, JF. Observations upon the vascularity of the human occipital lobe during visual activity. Brain 1928 Oct 1;51(3):310320.Google Scholar
Positron discovered. August 2, 2016. Physics Today. Available at https://physicstoday.scitation.org/do/10.1063/PT.5.031277/abs/.Google Scholar
The Nobel Prize in Physics 1936. NobelPrize.org. Available at www.nobelprize.org/prizes/physics/1936/anderson/biographical/.Google Scholar
Rhodes, R. The Making of the Atomic Bomb. Simon and Schuster, 2012.Google Scholar
The Nobel Prize. Women who changed science: Irene Joliot-Curie. NobelPrize.org. Available at www.nobelprize.org/womenwhochangedscience/stories/irene-joliot-curie.Google Scholar
The Nobel Prize in Chemistry 1935. NobelPrize.org. Available at www.nobelprize.org/prizes/chemistry/1935/joliot-fred/biographical/.Google Scholar
Joliot, F, Curie, I. Artificial production of a new kind of radio-element. Nature 1934 Feb 1;133(3354):201202.Google Scholar
Wagner, HN. A brief history of positron emission tomography (PET). Semin. Nucl. Med. 1998 Jul 1;28(3):213220.Google Scholar
Bailey, DL, Townsend, DW, Valk, PE, Maisey, MN (eds.). Positron Emission Tomography: Basic Sciences. London: Springer-Verlag, 2005.Google Scholar
Blahd, WH. History of external counting procedures. Semin. Nucl. Med. 1979 Jul;9(3):159163.Google Scholar
Sokoloff, L. Historical review of developments in the field of cerebral blood flow and metabolism. In Fukuuchi, Y, Tomita, M, Koto, A (eds.), Ischemic Blood Flow in the Brain. Keio University Symposia for Life Science and Medicine, vol. 6. Tokyo: Springer, 2001. https://doi.org/10.1007/978-4-431-67899-1_1.Google Scholar
Kety, Seymour, MD, interviewed by Ayub Ommaya, MD. 2015. YouTube. Available at www.youtube.com/watch?v=VZL9jVWL-bY.Google Scholar
Lassen, NA, Ingvar, DH, Skinhøj, E. Brain function and blood flow. Sci. Am. 1978 Oct;239(4):6271.Google Scholar
Heistad, DD, Kontos, HA. Cerebral circulation. In Terjung, R (ed.), Comprehensive Physiology. Available at https://onlinelibrary.wiley.com/doi/10.1002/cphy.cp020305.Google Scholar
Sokoloff, Louis, MD, interviewed by Ayub Ommaya, MD. 2016. YouTube. Available at www.youtube.com/watch?v=0URD-neou8A&index=91&list=PLWscsgSk-BepdDVWmKL0wNlDTR4ZxWYSm.Google Scholar
Ter-Pogossian, MM et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114(1):8998. doi:10.1148/114.1.89.Google Scholar
Hoffmann, EJ, Phelps, ME, Mullani, NA, Higgins, CS, Ter-Pogossian, MM. Design and performance characteristics of a whole-body positron transaxial tomograph. J. Nucl. Med. 1976 Jun;17(6):493502.Google Scholar
Raichle, ME, Grubb, RL, Gado, MH, Eichling, JO, Ter-Pogossian, MM. Correlation between regional cerebral blood flow and oxidative metabolism: In vivo studies in man. Arch. Neurol. 1976 Aug;33(8):523526.Google Scholar
Raichle, Marcus E., MD, interviewed by Sidney Goldring, MD. 2016. YouTube. Available at www.youtube.com/watch?v=XsDIpyaumIo.Google Scholar
Jones, T, Chesler, DA, Ter-Pogossian, MM. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br. J. Radiol. 1976 Apr;49(580):339343.Google Scholar
Lev, MH, Romero, JM, Schwamm, LH, Cudkowicz, ME, Brink, JA. Robert H. Ackerman, MD, MPH (1935–2018). AJNR Am. J. Neuroradiol. 2019;40(3):E12E13.Google Scholar
Ackerman, RH, Correia, JA, Alpert, NM, Baron, J-C, Gouliamos, A, Grotta, JC, et al. Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15: Initial results of clinicophysiologic correlations. Arch. Neurol. 1981;38(9):537543.Google Scholar
Baron, JC, Bousser, MG, Rey, A, Guillard, A, Comar, D, Castaigne, P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with [15]O positron emission tomography. Stroke 1981;12:454459.Google Scholar
Lassen, NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 1966;2(7473):11131115.Google Scholar
Baron, JC, Bousser, MG, Comar, D, Soussaline, F, Castaigne, P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo: Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur. Neurol. 1981;20(3):273284.Google Scholar
Astrup, J, Symon, L, Branston, NM, Lassen, NA. Thresholds of Cerebral Ischemica. New York: Springer, 1977.Google Scholar
Baron, JC, Bousser, MG, Comar, D, Castaigne, P. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans. Am. Neurol. Assoc. 1981;105:459461.Google Scholar
Marchal, G, Serrati, C, Rioux, P, Petit-Taboué, MC, Viader, F, de la Sayette, V, et al. PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: Relation to outcome. Lancet 1993 Apr 10;341(8850):925927.Google Scholar
Baron, JC, von Kummer, R, del Zoppo, GJ. Treatment of acute ischemic stroke: Challenging the concept of a rigid and universal time window. Stroke 1995;26(12):22192221.Google Scholar
Heiss, WD, Rosner, G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann. Neurol. 1983;14(3):294301.Google Scholar
Jones, TH, Morawetz, RB, Crowell, RM, Marcoux, FW, FitzGibbon, SJ, DeGirolami, U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 1981;54(6):773782.Google Scholar
Heiss, WD, Huber, M, Fink, GR, Herholz, K, Pietrzyk, U, Wagner, R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Blood Flow Metab. 1992;12(2):193203.Google Scholar

References

Nuland, S. René Laennec. In Doctors: The Biography of Medicine. New York: Vintage Books, 1988, pp. 200237.Google ScholarGoogle Scholar
AlGhatrif, M, Lindsay, J. A brief review: History to understand fundamentals of electrocardiography. J. Community Hosp. Intern. Med. Perspect. 2012 Apr 30;2(1).Google Scholar
Matteucci, C. Sur un phenomene physiologique produit par les muscles en contraction. Ann. Chim. Phys. 1842;6:339341.Google Scholar
Waller, AD. On the electromotive changes connected with the beat of the mammalian heart, and of the human heart in particular. Phil. Trans. R. Soc. Lond. B 1889;180:169194.Google Scholar
Einthoven, W. The different forms of the human electrocardiogram and their signification. Lancet 1912;1:853861.Google Scholar
Henson, JR. Descartes and the ECG lettering series. J. Hist. Med. Allied Sci. 1971;26(2):181186.Google Scholar
Burnett, J. The origins of the electrocardiograph as a clinical instrument. Med. Hist. Suppl. 1985;5:5376. PubMed PMID: 3915524; PubMed Central PMCID: PMCPMC2557409.Google Scholar
Lewis, T. Report, CXIX. Auricular fibrillation: A common clinical condition. Br. Med. J. 1909;2(2552):1528.Google Scholar
Lewis, T. A Lecture on the evidences of auricular fibrillation treated historically: Delivered at University College Hospital. Br. Med. J. 1912;1:5760.Google Scholar
Rothberger, CJ, Wiiterberg, H. Vorhofflimmem und Arhythmia perpetua. Wien Klin. Wochenschr. 1909;22:839844.Google Scholar
Takemi, Taro. Wikipedia. Available at https://en.wikipedia.org/wiki/Taro_Takemi.Google Scholar
Barnes, AR, Pardee, HEB, White, PD, et al. Standardization of precordial leads. Am. Heart J. 1938;15:235239.Google Scholar
Holter, NJ, Generelli, JA. Remote recording of physiologic data by radio. Rocky Mountain Med. J. 1949:747–751.Google Scholar
Wilson, FN, Kossmann, CE, Burch, GE, Goldberger, E, Graybiel, A, Hecht, HH, et al. Recommendations for standardization of electrocardiographic and vectorcardiographic leads. Circulation 1954;10(4):564573.Google Scholar
Krahn, AD, Klein, GI. Yee, R, Norros, C. Maturation of the sensed electrogram amplitude over time in a new subcutaneous implantable loop recorder. PACE 1997;20:16861690.Google Scholar
Feigenbaum, H. Echocardiography. Philadelphia: Lea & Febiger, 1972. Chapter 34 discusses the use of ultrasound in cerebrovascular disease.Google Scholar
Curie, P, Curie, J. Developpement, par pression de l’electricite polaire dans les cristaux hemiedres a faces inclinees. Comptes Rendus 1880;91:291295.Google Scholar
Feigenbaum, H. Evolution of echocardiography. Circulation 1996;93:13211327.Google ScholarGoogle ScholarGoogle Scholar
Joyner, CR Jr, Reid, JM, Bond, JP. Reflected ultrasound in the assessment of mitral valve disease. Circulation 1963;27:503511.Google Scholar
Feigenbaum, H. Echocardiography. Philadelphia: Lea & Febiger, 1972.Google Scholar
Amarenco, P, Duyckaerts, C, Tzourio, C, Henin, D, Bousser, M-G, Hauw, J-J. The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N. Engl. J. Med. 1992;326:221225.Google ScholarGoogle Scholar
Fonseca, AC, Ferro, JM, Almeida, AG. Cardiovascular magnetic resonance imaging and its role in the investigation of stroke: An update. J. Neurol. 2021 Jan 13. doi: 10.1007/s00415-020-10393-6.Google Scholar

References

Pound, P, Bury, M, Ebrahim, S. From apoplexy to stroke. Age and Ageing 1997;26:331337. Writings about apoplexy are reviewed at length in Chapter 8.Google Scholar
Adams, F. The Genuine Works of Hippocrates: Translated from the Greek. Baltimore, MD: Williams and Wilkins, 1939. Hippocrates’s contributions to stroke are discussed in Chapter 1.Google Scholar
Oxford English Dictionary, 2nd ed. Oxford: Clarendon Press, 1989.Google Scholar
Barnhart, RK. The Barnhart Dictionary of Etymology. New York: HW Wilson, 1988.Google Scholar
Cole, W. A Physico-Medical Essay Concerning the Late Frequency of Apoplexies Together with a General Method of Their Prevention and Cure: In a Letter to a Physician. Oxford: The Theater, 1869. Reprint: New York: Classics of Neurology & Neurosurgery Library, 1995.Google Scholar
Sacco, LR, Kasner, SE, Broderick, JP, Caplan, LR, et al. (AHA/ASA Expert Consensus Document) An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013;44:20642089.Google Scholar
Cerebrovascular diseases: Prevention, treatment, and rehabilitation. WHO Technical Report Series No. 469, 1971.Google Scholar
Caplan, LR. Are terms such as completed stroke or RIND of continued usefulness? Stroke 1983;14:431433.Google ScholarGoogle Scholar
These texts are mentioned and discussed in Chapter 14.Google Scholar
Luckey, H, ed. Cerebral Vascular Diseases: Transactions of a Conference Held under the Auspices of the American Heart Association, Princeton, New Jersey, January 24–26, 1954. New York: Grune & Stratton, 1955, pp. 9596.Google Scholar
Wright, IS, Millikan, C, eds. Cerebral Vascular Diseases: Transactions of the Second Conference Held under the Auspices of the American Heart Association, Princeton, NJ, January 16–18, 1957. New York: Grune & Stratton, 1958.Google Scholar
Siekert, RG, Whisnant, JP, eds. Cerebrovascular Disease: Fourth Conference. New York: Grune & Stratton, 1965.Google Scholar
A classification and outline of cerebrovascular disease. Stroke 1975;6:564–616.Google Scholar
Easton, JD, Albers, GW, Caplan, LR, Saver, JL, Sherman, MD (for the TIA Working Group). (Discussion) Reconsideration of TIA terminology and definitions. Neurology 2004;62(6):S29S34.Google Scholar
Albers, G, Caplan, LR, Easton, JD, et al. Transient ischemic attack: Proposal for a new definition. N. Engl. J. Med. 2002;347:17131716.Google Scholar
Mohr, JP. Historical perspective. Neurology 2004 62(suppl 6):S3S6.Google Scholar
Loeb, C, Priano, A, Albano, C. Clinical features and long‐term follow‐up of patients with reversible ischemic attacks (RIA). Acta Neurologica Scandinavica 1978;57:471480.Google Scholar
Bogousslavsky, J, Regli, F. Cerebral infarction with transient signs (CITS): Do TIAs correspond to small deep infarcts in internal carotid artery occlusion? Stroke 1984;15:536539.Google Scholar
Waxman, S, Toole, JF. Temporal profile resembling TIA in the setting of cerebral infarction. Stroke 1983;14:433437.Google Scholar
Bernstein, EF, Browse, NL. The CHAT classification of stroke. Ann. Surg. 1989;209(2):242248.Google Scholar
Easton, JD, Saver, JL, Albers, GW, et al. Definition and evaluation of transient ischemic attack: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. Stroke 2009;40:22762293.Google Scholar
Amarenco, P, Lavallée, PC, Labreuche, J, et al. for the TIAregistry.org Investigators. One-year risk of stroke after transient ischemic attack or minor stroke. N. Engl. J. Med. 2016;374:15331542.Google Scholar
Amarenco, P, Lavallée, PC, Monteiro Tavares, L, et al. for the TIAregistry.org Investigators. Five-year risk of stroke after TIA or minor ischemic stroke. N. Engl. J. Med. 2018;378:21822190.Google Scholar
Giles, MF, Albers, GW, Amarenco, P, et al. Early stroke risk and ABCD2 score performance in tissue- vs time-defined TIA: A multicenter study. Neurology 2011;77:12221228.Google Scholar
Lou, M, Safgdar, A, Edlow, J, et al. Can ABCD2 score predict the need for in-hospital intervention in patients with transient ischemic attacks? Int. J. Emerg. Med. 2010;3:7580.Google ScholarGoogle ScholarGoogle Scholar
Kidwell, CS, Warach, S. Acute ischemic cerebrovascular syndrome: Diagnostic criteria. Stroke 2003;34:29952998.Google Scholar

Notes and References

Some material in this chapter has been previously published in Caplan, LR. Caplan’s Stroke, 5th ed. Cambridge: Cambridge University Press, 2016.Google ScholarGoogle ScholarGoogle Scholar
Dawber, TR. The Framingham Study: The Epidemiology of Atherosclerotic Disease. Cambridge, MA: Harvard University Press, 1980.Google ScholarGoogle ScholarGoogle Scholar
The ARIC study has produced more than 1,000 reports. ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) study: Design and objectives. American Journal of Epidemiology 1989;129:687702.Google ScholarGoogle ScholarGoogle Scholar
Gottesman, RF, Albert, MS, Alonso, A, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) Cohort. JAMA Neurology 2017;74(10):12461254.Google Scholar
WHO MONICA Project principal investigators. The World Health Organization MONICA project (Monitoring Trends and Determinants in Cardiovascular Disease: A major international collaboration. Journal of Clinical Epidemiology 1988;41:105114.Google ScholarGoogle Scholar
Bonita, Ruth. Passionate about prevention. Lancet Neurology 2009;8:312.Google Scholar
Krishnamurthi, RV, Basrker-Collo, S, Parag, V, et al. Stroke incidence by major pathological type and ischemic subtypes in the Auckland Regional Community Stroke Studies. Stroke 2018;49:310.Google Scholar
The Nurses Health Study was launched in 1976. The cohort consisted of 121,700 married registered nurses. The second Nurses Health Study began in 1989 and enrolled 116,430 nurses; and the third cohort began in 2010 and has ongoing enrollment. During 40 years, these studies generated long-term results about lifestyle, hormonal factors, and health-related information across the life course and an extensive collection of various biological specimens. Bao, Y, Bertoia, ML, Lenart, EB, Stampfer, MJ, Willett, WC, Speizer, FE, Chavarro, JE. Origin, methods, and evolution of the Three Nurses’ Health studies. American Journal of Public Health 2016;106:15731581.Google ScholarGoogle Scholar
The British Doctors Study enrolled 40,701 British male doctors in 1951. Doll, R, Hill, AB. The mortality of doctors in relation to their smoking habits. British Medical Journal 1954;328:15291533. 2004;2281519.Google ScholarGoogle Scholar
The National Health and Nutrition Examination Survey (NHANES) information and survey results are available at www.entnet.org/content/national-health-and-nutrition-examination-survey-nhanes.Google Scholar
The Stroke Belt in the Southeastern United States has been extensively researched: Gillum, RF, Ingram, DD. Relation between residence in the Southeast region of the United States and stroke incidence: The NHANES l epidemiologic follow-up study. American Journal of Epidemiology 1996;144:665673.Google ScholarGoogle ScholarGoogle Scholar
Kagan, A, Harris, BR, Winkelstein, W Jr, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: Demographic, physical, dietary and biochemical characteristics. Journal of Chronic Diseases 1974;27:345364.Google ScholarGoogle Scholar
The community-wide studies cited were: Oxfordshire Community Stroke Project: Incidence of stroke in Oxfordshire: First year’s experience of a community stroke registry. British Medical Journal 1983;287:713717.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Brown, RD, Rocca, WA. Jack P. Whisnant, MD, FAAN (1924–2015). Neurology 2015;85:18321833.Google Scholar
Whisnant, JP, Fitzgibbons, JP, Kurland, LT, et al. Natural history of stroke in Rochester, Minnesota, 1945 through 1954. Stroke 1971;2:1122.Google ScholarGoogle ScholarGoogle Scholar
Whisnant, JP. The decline of stroke. Stroke 1984;15:160168.Google Scholar
Koton, S, Schneider, AL, Rosamond, WD, Shahar, E, Sang, Y, Gottesman, RF, Coresh, J. Stroke incidence and mortality trends in US communities, 1987 to 2011. Journal of the American Medical Association (JAMA) 2014;312:259268.Google Scholar
Gorelick, PB. Alter, M (eds.). Handbook of Neuroepidemiology. New York: Marcel Dekker, 1994.Google ScholarGoogle Scholar
Frohman, EM, Stuve, O, Frohman, TC, Lisak, R. In memoriam: John F. Kurtzke, MD (1926–2015): A founding father of neuroepidemiology and pioneer of modern clinical trial design. JAMA Neurology. 2016;73(4):482483.Google Scholar
Kelley, RE, Azizi, A. In memoriam: Milton Alter, MD, PhD (1929–2016). Neurology 2016;87:2012.Google Scholar
Kirby, T. Phillip B. Gorelick: Cshanging neurological practice in the USA. Lancet Neurology 2016:15:361.Google ScholarGoogle Scholar

Notes and References

Aring, CD, Merritt, HH. Differential diagnosis between cerebral hemorrhage and cerebral thrombosis. Archives of Internal Medicine 1935;56:435456. This study is the topic of Chapter 25.Google Scholar
Dalsgaard-Nielsen, T. Survey of 1000 cases of apoplexia cerebri. Acta Psychiatrica Neurologica Scandinavica 1955;30:169185.Google Scholar
Whisnant, JP, Fitzgibbons, JP, Kurland, LT, Sayre, GP. Natural history of stroke in Rochester, Minnesota, 1945 through 1954. Stroke 1971;2:1122.Google ScholarGoogle Scholar
Mohr, J, Caplan, L, Melski, J, Duncan, G, Goldstein, R, Kistler, J, Pessin, M, Bleich, H. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978;28:754762. This registry and the role of Caplan is discussed in Chapter 30.Google Scholar
Kunitz, S, Gross, CR, Heyman, A, Kase, CS, Mohr, JP, Price, TR, Wolf, PA. The pilot Stroke Data Bank: Definition, design, and data. Stroke 1984;15:740746.Google Scholar
Foulkes, MA, Wolf, PA, Price, TR, Mohr, JP, Hier, DB. The Stroke Data Bank: Design, methods, and baseline characteristics. Stroke 1988;19:547554.Google Scholar
Examples of International Stroke Registries include Australia: Chambers, BR, Donnan, GA, Bladin, PF. Patterns of stroke: An analysis of the first 700 consecutive admissions to the Austin Hospital Stroke Unit. Australia and New Zealand Journal of Medicine 1983;13:5764.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Caplan, LR, Hier, DB, D’Cruz, I. Cerebral embolism in the Michael Reese Stroke Registry. Stroke 1983;14:530536.Google Scholar
Researchers in Cincinnati were leaders in epidemiological studies of stroke patients. Their research focused on brain and subarachnoid hemorrhage and on differences between frequencies in Black and white patients. Broderick, J, Brott, T, Tomsick, T, Huster, G, Miller, R. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. The New England Journal of Medicine 1992;326:733736.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Caplan, LR, Wityk, RJ, Glass, TA, Tapia, J, Pazdera, L, Chang, HM, Teal, P, Dashe, JF, Chaves, CJ, Breen, JC, Vemmos, K, Amarenco, P, Tettenborn, B, Leary, M, Estol, C, Dewitt, LD, Pessin, MS. New England Medical Center Posterior Circulation Registry. Annals of Neurology 2004;56:389398.Google Scholar
The Northern Manhattan Study (NOMASS) provided important epidemiological information among various racial groups in New York City. Sacco, RL, Boden-Albala, B, Abel, G, Lin, IF, Elkind, M, Hauser, WA, Paik, MC, Shea, S. Race-ethnic disparities in the impact of stroke risk factors: The northern Manhattan stroke study. Stroke 2001;32:17251731.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar

References

Much of this chapter is adapted and published in Ashwal, S (ed.), Founders of Child Neurology, 2nd ed. Elsevier, 2021.Google Scholar
Willis, T. Of the pia mater. In The Anatomy of the Brain. Reprint. Tuckahoe, NY: USV Pharmaceutical Corp., 1971.Google ScholarGoogle Scholar
Cruveilhier, J. Anatomie pathologique de corp humaine; descriptions figures lithographies et colores des diverses alterations morbides dont le corp humain est susceptible. Paris: JB Bailliere, 1842.Google Scholar
Quain, R. Observations on Cerebral Apoplexy at Different Periods of Life. London, 1849.Google Scholar
Otto Huebner’s career and his recurrent artery are discussed in Chapter 12.Google Scholar
McNutt, SJ. Seven cases of spastic infantile hemiplegia. Am. J. Med. Sci. 1885;177(1):5878.Google Scholar
Osler, W. The Cerebral Palsies of Childhood: A Clinical Study from the Infirmary for Nervous Diseases. London: P. Blakiston, 1889. Osler and his textbook of mediicne are discussed at length in Chapter 14.Google Scholar
Sachs, B, Peterson, F. A study of the cerebral palsies of early life, based upon an analysis of one hundred and forty cases. J. Nerv. Ment. Dis. 1890;17:295332.Google Scholar
Sachs, B. A Treatise on the Nervous Diseases of Children. London: Balliere, Tindall and Cox, 1895.Google Scholar
Freud, S. Infantile Cerebral Paralysis (1895). Trans. Russin, L. A.. Coral Gables, FL: University of Miami Press, 1968.Google Scholar
Holt, LE. The Diseases of Infancy and Childhood: For the Use of Students and Practitioners of Medicine. D. Appleton and Company, 1897.Google Scholar
Ford, FR, Schaffer, AJ. Hemiplegia. Arch. Neurol. Psychiatry 1927;18(3):323347.Google Scholar
Simpson, R. Thrombosis of the cerebral vessels in infants. Can. Med. Assoc. J. 1932;26(3):317319.Google Scholar
Ehlers, H, Courville, C. Thrombosis of internal cerebral veins in infancy and childhood. J. Pediatr. 1936;8:600623.Google Scholar
Mitchell, RG. Venous thrombosis in acute infantile hemiplegia. Arch. Dis. Child. 1951;27(131):95104.Google Scholar
Clark, RM, Linelle, EA. Case report: Prenatal occlusion of the internal carotid artery. J. Neurol. Neurosurg. Psychiatry 1954;17(4):295297.Google Scholar
Banker, BQ. Cerebrovascular disease in infancy and childhood. 1. Occlusive vascular disease. J. Neuropathol. Exp. Neurol. 1961;21:127140.Google Scholar
Aicardi, J, Amsili, J, Chevrie, JJ. Acute hemiplegia in infancy and childhood. Developmental Med. Child Neurol. 1969;11(2):162173.Google Scholar
Stephenson, JBP. In memoriam: Professor Jean Aicardi (1926–2015). Pediatr. Neurol. 2016;54:34. Also published in the Child Neurology Society Archives. Available at www.childneurologysociety.org/docs/default-source/default-document-library/connectionsfinal-oct-2014.pdf?sfvrsn=4309d28_0.Google Scholar
Golden, GS. Vascular diseases of the brain and tics, twitches and habit spasms. Curr. Probl. Pediatr. 1978;8(6):141.Google Scholar
Solomon, GE, Hilal, SK, Gold, AP, Carter, S. Natural history of acute hemiplegia of childhood. Brain 1970;93(1):107120.Google Scholar
Isler, W. Acute Hemiplegias and Hemisyndromes in Childhood. London: William Heinemann Medical Books, 1971.Google Scholar
Isler, W. Cerebrovascular diseases in the first three years of life. Brain Dev. 1980;2(2):95105.Google Scholar
Newton, TH, Gooding, CA. Compression of superior sagittal sinus by neonatal calvarial molding. Radiology 1975;115(3):635640.Google Scholar
Kirkham, FB Neville, B, Levin, S. Bedside diagnosis of stenosis of middle cerebral artery. Lancet 1986;5(1):197198.Google Scholar
Kirkham, Fenella. University College London. Available at www.ucl.ac.uk/child-health/people/fenella-kirkham.Google Scholar
Hill, A, Martin, DJ, Daneman, A, Fitz, CR. Focal ischemic cerebral injury in the newborn: Diagnosis by ultrasound and correlation with computed tomographic scan. Pediatrics 1983;71(5):790793.Google Scholar
Eeg-Olofsson, O, Ringheim, Y. Stroke in children: Clinical characteristics and prognosis. Acta Paediatr. Scand. 1983;72(3):391395.Google Scholar
Raybaud, CA, Livet, MO, Jiddane, M, Pinsard, N. Radiology of ischemic strokes in children. Neuroradiology 1985;27(6):567578.Google Scholar
Levy, SR, Abroms, IF, Marshall, PC, Rosquete, EE. Seizures and cerebral infarction in the full-term newborn. Ann. Neurol. 1985;17(4):366370.Google Scholar
Roach, ES, Riella, AR. Pediatric Cerebrovascular Disorders. Mt. Kisco, NY: Futura Publishing, 1988.Google Scholar
de Vries, LS, Regev, R, Dubowitz, LM. Late onset cystic leucomalacia. Arch. Dis. Child. 1986;61(3):298299.Google ScholarGoogle ScholarGoogle Scholar
deVeber, GA et al. Epidemiology and outcomes of arterial ischemic stroke in children: The Canadian Pediatric Ischemic Stroke Registry. Pediatr. Neurol. 2017;69:5870.Google ScholarGoogle Scholar

References

Indredavik, B, Bakke, F, Solberg, R, Rokseth, R, Haaheim, LL, Holme, I. Benefit of a stroke unit: A randomized controlled trial. Stroke 1991 Aug;22(8):10261031.Google Scholar
Indredavik, B, Slørdahl, SA, Bakke, F, Rokseth, R, Håheim, LL. Stroke unit treatment: Long-term effects. Stroke 1997 Oct;28(10):18611866.Google Scholar
Díez-Tejedor, E, Fuentes, B. Acute care in stroke: Do stroke units make the difference? Cerebrovasc. Dis. 2001;11(suppl 1):3139.Google Scholar
Birbeck, GL, Zingmond, DS, Cui, X, Vickrey, BG. Multispecialty stroke services in California hospitals are associated with reduced mortality. Neurology 2006 May 23;66(10):15271532.Google Scholar
How do stroke units improve patient outcomes? A collaborative systematic review of the randomized trials. Stroke Unit Trialists Collaboration. Stroke 1997 Nov;28(11):2139–2144.Google Scholar
Collaborative systematic review of the randomised trials of organised inpatient (stroke unit) care after stroke. Stroke Unit Trialists Collaboration. BMJ 1997 Apr 19;314(7088):1151–1159.Google Scholar
Hacke, W, Kaste, M, Fieschi, C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995;274:10171025.Google Scholar
Hacke, W, Kaste, M, Fieschi, C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998;352:12451251.Google Scholar
Clare, CS. Role of the nurse in acute stroke care. Nurs. Stand. 2020 Apr 1;35(4):6875.Google Scholar
Alberts, MJ, Hademenos, G, Latchaw, RE, Jagoda, A, Marler, JR, Mayberg, MR, et al. Recommendations for the establishment of primary stroke centers. Brain Attack Coalition. JAMA 2000 Jun 21;283(23):31023109.Google Scholar
Alberts, MJ, Wechsler, LR, Jensen, MEL, Latchaw, RE, Crocco, TJ, George, MG, et al. Formation and function of acute stroke-ready hospitals within a stroke system of care recommendations from the Brain Attack Coalition. Stroke 2013 Dec 1;44(12):33823393.Google Scholar
Towner, J, Pieters, T, Schmidt, T, Pilcher, W, Bhalla, T. A history of mobile stroke units and review of literature. Am. J. Interv. Radiol. 2018;2(9):15.Google Scholar

Notes and References

Grenvik, A, Pinsky, MR. Evolution of the intensive care unit as a clinical center and critical care medicine as a discipline. Crit. Care Clin. 2009;25(1):239250.Google Scholar
Woollam, CHM. The development of apparatus for intermittent negative pressure respiration. (2) 1919–1976, with special reference to the development and uses of cuirass respirators. Anaesthesia 1976;31(5):666685.Google Scholar
Drinker, P, Shaw, LA. An apparatus for the prolonged administration of artificial respiration: I. A design for adults and children. J. Clin. Invest. 1929;7(2):229247.Google Scholar
Rosengart, MR. Critical care medicine: Landmarks and legends. Surg. Clin. North Am. 2006;86(6):13051321.Google Scholar
Wijdicks, EF, Russell, WR, Baker, AB, Plum, F. Pioneers of ventilatory management in poliomyelitis. Neurology 2016;87(11):11671170.Google Scholar
Ibsen, B. From anaesthesia to anaesthesiology: Personal experiences in Copenhagen during the past 25 years. Acta Anaesthesiol. Scand. Suppl. 1975;61:169.Google Scholar
Lassen, HC. A preliminary report on the 1952 epidemic of poliomyelitis in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet 1953;1(6749):3741.Google Scholar
Engstrom, CG. Treatment of severe cases of respiratory paralysis by the Engstrom universal respirator. Br. Med. J. 1954;2(4889):666669.Google Scholar
Marshall, J. The work of a respiratory unit in a neurological hospital. Postgrad. Med. J. 1961;37:2630.Google Scholar
Timmermans, S. Hearts too good to die: Claude S. Beck’s contributions to life-saving. J. Hist. Sociol. 2001;14(1):108131.Google Scholar
Beck, CS, Pritchard, WH, Feil, HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947;135(15):985.Google Scholar
Beck, CS, Weckesser, EC, Barry, FM. Fatal heart attack and successful defibrillation: New concepts in coronary artery disease. JAMA 1956;161(5):434436.Google Scholar
Zoll, PM, Linenthal, AJ, Gibson, W, Paul, MH, Norman, LR. Termination of ventricular fibrillation in man by externally applied electric countershock. N. Engl. J. Med. 1956;254(16):727732.Google Scholar
Kouwenhoven, WB, Jude, JR, Knickerbocker, GG. Closed-chest cardiac massage. JAMA 1960;173:10641067.Google Scholar
Safar, P. Mouth-to-mouth airway. Anesthesiology 1957;18(6):904906.Google Scholar
Safar, P, Dekornfeld, TJ, Pearson, JW, Redding, JS. The intensive care unit: A three year experience at Baltimore city hospitals. Anaesthesia 1961;16:275284.Google Scholar
Weil, MH, Shubin, H, Rosoff, L. Fluid repletion in circulatory shock: Central venous pressure and other practical guides. JAMA 1965;192:668674.Google Scholar
Julian, DG. Treatment of cardiac arrest in acute myocardial ischaemia and infarction. Lancet 1961;2(7207):840844.Google Scholar
Killip, T, 3rd, Kimball, JT. Treatment of myocardial infarction in a coronary care unit: A two year experience with 250 patients. Am. J. Cardiol. 1967;20(4):457464.Google Scholar
Rogers, RM, Weiler, C, Ruppenthal, B. Impact of the respiratory intensive care unit on survival of patients with acute respiratory failure. Chest 1972;62(1):9497.Google Scholar
Jackson, DL, Youngner, S. Patient autonomy and “death with dignity”: Some clinical caveats. N. Engl. J. Med. 1979;301(8):404408.Google Scholar
Plum, F, Posner, JB. The Diagnosis of Stupor and Coma. Philadelphia: EA Davis, 1966.Google Scholar
A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA 1968;205(6):337–340.Google Scholar
Fisher, CM. The neurological examination of the comatose patient. Acta Neurol. Scand. 1969;45(S36):556.Google Scholar
Brettle, RP, Gross, M, Legg, NJ, Lockwood, M, Pallis, C. Treatment of acute polyneuropathy by plasma exchange. Lancet 1978;2(8099):1100.Google Scholar
Ropper, AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N. Engl. J. Med. 1986;314(15):953958.Google Scholar
McNealy, DE, Plum, F. Brainstem dysfunction with supratentorial mass lesions. Arch. Neurol. 1962;7:1032.Google Scholar
Kjellberg, RN, Prieto, A Jr. Bifrontal decompressive craniotomy for massive cerebral edema. J. Neurosurg. 1971;34(4):488493.Google Scholar
Lundberg, N, Troupp, H, Lorin, H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury: A preliminary report. J. Neurosurg. 1965;22(6):581590.Google Scholar
Lundberg, N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 1960;36(149):1193.Google Scholar
Miller, JD, Becker, DP, Ward, JD, Sullivan, HG, Adams, WE, Rosner, MJ. Significance of intracranial hypertension in severe head injury. J. Neurosurg. 1977;47(4):503516.Google Scholar
Seelig, JM, Becker, DP, Miller, JD, Greenberg, RP, Ward, JD, Choi, SC. Traumatic acute subdural hematoma: Major mortality reduction in comatose patients treated within four hours. N. Engl. J. Med. 1981;304(25):15111518.Google Scholar
Reilly, PL, Graham, DI, Adams, JH, Jennett, B. Patients with head injury who talk and die. Lancet 1975;2(7931):375377.Google Scholar
Becker, DP, Miller, JD, Ward, JD, Greenberg, RP, Young, HF, Sakalas, R. The outcome from severe head injury with early diagnosis and intensive management. J. Neurosurg. 1977;47(4):491502.Google Scholar
Teasdale, G, Jennett, B. Assessment of coma and impaired consciousness: A practical scale. Lancet 1974;2(7872):8184.Google Scholar
Jennett, B. Outcome of severe damage to the central nervous system: Scale, scope and philosophy of the clinical problem. Ciba Found. Symp. 1975;34:321.Google Scholar
Bullock, R, Chesnut, RM, Clifton, G, et al. Guidelines for the management of severe head injury. Brain Trauma Foundation, American Association of Neurological Surgeons Joint Section on Neurotrauma and Critical Care. J. Neurotrauma 1996;13:641734.Google Scholar
Cooper, DJ, Rosenfeld, JV, Murray, L, Arabi, YM, Davies, AR, D’Urso, P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N. Engl. J. Med. 2011;364(16):14931502.Google Scholar
Hutchinson, PJ, Kolias, AG, Timofeev, IS, Corteen, EA, Czosnyka, M, Timothy, J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N. Engl. J. Med. 2016;375(12):11191130.Google Scholar
Fay, T. Observations on generalized refrigeration in cases of severe cerebral trauma. Res. Publ. Assos. Res. Nerv. Dis. 1945;4:611619.Google Scholar
Cooper, DJ, Nichol, AD, Bailey, M, Bernard, S, Cameron, PA, Pili-Floury, S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: The POLAR randomized clinical trial. JAMA 2018;320(21):22112220.Google Scholar
Andrews, PJ, Sinclair, HL, Rodriguez, A, Harris, BA, Battison, CG, Rhodes, JK, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N. Engl. J. Med. 2015;373(25):24032412.Google Scholar
Benson, DW, Williams, GR Jr, Spencer, FC, Yates, AJ. The use of hypothermia after cardiac arrest. Anesth. Analg. 1959;38:423428.Google Scholar
Safar, P, Brown, TC, Holtey, WJ, Wilder, RJ. Ventilation and circulation with closed-chest cardiac massage in man. JAMA 1961;176:574576.Google Scholar
Sterz, F, Safar, P, Tisherman, S, Radovsky, A, Kuboyama, K, Oku, K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit. Care Med. 1991;19(3):379389.Google Scholar
Hypothermia after Cardiac Arrest Study G: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002;346(8):549–556.Google Scholar
Donnino, MW, Andersen, LW, Berg, KM, Reynolds, JC, Nolan, JP, Morley, PT, et al. Temperature management after cardiac arrest: An advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation 2015;132(25):24482456.Google Scholar
Zeumer, H, Hacke, W, Kolmann, HL, Poeck, K. Lokale Fibrinolyse bei Basilaris thrombose. Dtsch Med. Wochenschr. 1982;107:728731.Google Scholar
Prien, T, Meyer, J, Lawin, P. Development of intensive care medicine in Germany. J. Clin. Anesth. 1991;3(3):253258.Google Scholar
Opderbecke, HW. Opinion of the German Society for Anesthesiology and Resuscitation on the organizations of recovery room, emergency station and intensive care in a hospital. Anaesthesist 1967;16(9):282284.Google Scholar
Grund, JPC, Breeksema, JJ. Drug policy in the Netherlands. In Colson, R, Bergeron, H (eds.), European Drug Policies: The Ways of Reform. Routledge, 2017, pp. 128148.Google Scholar
Sefrin, P, Weidringer, JW. History of emergency medicine in Germany. J. Clin. Anesth. 1991;3(3):245248.Google Scholar
Hacke, W, Del Zoppo, GJ, Hirschberg, M. Thrombolytic Therapy in Acute Ischemic Stroke. New York: Springer-Verlag, 1991.Google Scholar
Del Zoppo, GJ, Poeck, K, Pessin, M, Wolpert, SA, Furlan, AJ, Ferbert, A, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann. Neurol. 1992;32:7886.Google Scholar
The initiation and evolution of thrombolysis is discussed in detail in Chapter 50.Google Scholar
Schwarz, S, Schwab, S, Steiner, HH, Hanley, D, Hacke, W. Fibrinolysis of intraventricular hematoma with rt-PA. Nervenarzt. 1999;70(2):123130.Google Scholar
Naff, NJ, Carhuapoma, JR, Williams, MA, Bhardwaj, A, Ulatowski, JA, Bederson, J, et al. Treatment of intraventricular hemorrhage with urokinase: Effects on 30-day survival. Stroke 2000;31(4):841847.Google Scholar
Hanley, DF, Lane, K, McBee, N, Ziai, W, Tuhrim, S, Lees, KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: Results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 2017;389(10069):603611.Google Scholar
Barrett, RJ, Hussain, R, Coplin, WM, Berry, S, Keyl, PM, Hanley, DF, et al. Frameless stereotactic aspiration and thrombolysis of spontaneous intracerebral hemorrhage. Neurocrit. Care 2005;3(3):237245.Google Scholar
Hanley, DF, Thompson, RE, Muschelli, J, Rosenblum, M, McBee, N, Lane, K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15(12):12281237.Google Scholar
Hanley, DF, Thompson, RE, Rosenblum, M, Yenokyan, G, Lane, K, McBee, N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019;393(10175):10211032.Google Scholar
Auer, LM, Deinsberger, W, Niederkorn, K, Gell, G, Kleinert, R, Schneider, G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. J. Neurosurg. 1989;70(4):530535.Google Scholar
Vespa, P, Hanley, D, Betz, J, Hoffer, A, Engh, J, Carter, R, et al. ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for brain hemorrhage: A multicenter randomized controlled trial. Stroke 2016;47(11):27492755.Google Scholar
Ivamoto, HS, Numoto, M, Donaghy, RM. Surgical decompression for cerebral and cerebellar infarcts. Stroke 1974;5(3):365370.Google Scholar
Hacke, W, Schwab, S, Horn, M, Spranger, M, De Georgia, M, von Kummer, R. “Malignant” middle cerebral artery territory infarction: Clinical course and prognostic signs. Arch. Neurol. 1996;53(4):309315.Google Scholar
Rieke, K, Schwab, S, Krieger, D, von Kummer, R, Aschoff, A, Schuchardt, V, et al. Decompressive surgery in space-occupying hemispheric infarction: Results of an open, prospective trial. Crit. Care Med. 1995;23(9):15761587.Google Scholar
Frank, JI, Krieger, D, Chyatte, D. Hemicraniectomy and durotomy upon deterioration from massive hemispheric infarction: A proposed multicenter, prospective, randomized study. Stroke 1999;30:243.Google Scholar
Juttler, E, Schwab, S, Schmiedek, P, Unterberg, A, Hennerici, M, Woitzik, J, et al. Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): A randomized, controlled trial. Stroke 2007;38(9):25182525.Google Scholar
Vahedi, K, Hofmeijer, J, Juettler, E, Vicaut, E, George, B, Algra, A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215222.Google Scholar
Ropper, AH, Kennedy, SF, Zervas, NT. Neurological and Neurosurgical Intensive Care. Baltimore, MD: University Park Press, 1983.Google Scholar
Hacke, W. Neurologische Intensivmedizin. Erlangen: Permed, 1984.Google Scholar
Hacke, W, Hanley, D, Einaupl, DF, Bleck, TP, Diringer, MN. NeuroCritical Care. Berlin: Springer, 1994.Google Scholar
Knopf, L, Staff, I, Gomes, J, McCullough, L. Impact of a neurointensivist on outcomes in critically ill stroke patients. Neurocrit. Care 2012;16(1):6371.Google Scholar

References

Wright, I, Millikan, CH. Cerebrovascular Diseases: Transactions of the First Conference Held January 24–26, 1954 at Princeton, New Jersey. New York: Grune & Stratton, 1954.Google Scholar
Wright, I, Millikan, CH. Cerebrovascular Diseases: Second Conference. New York: Grune & Stratton, 1958.Google Scholar
NINDS Ad Hoc Committee. A classification and outline of cerebrovascular diseases. Neurology 1958;8:188216.Google Scholar
Fisher, CM. Anticoagulant therapy in cerebral thrombosis and cerebral embolism: A national cooperative study, interim report. Neurology 1961;11:119131.Google ScholarGoogle Scholar
Fisher, CM. Anticoagulant study. In Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 3, pp. 173235.Google Scholar
Millikan, C. Reassessment of anticoagulant therapy in various types of occlusive cerebrovascular disease. Stroke 1971;2:201208.Google Scholar
The story of aspirin is the topic of Chapter 47 and other antiplatelets are considered in Chapter 48.Google Scholar
Vane, JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971;231:232235.Google Scholar
Fields, WS, Lemak, NA, Frankowski, RF, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke 1977;8:301314.Google Scholar
Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N. Engl. J. Med. 1978;299:5359.Google Scholar
Barnett, Henry J. M.. Wikipedia. Available at https://en.wikipedia.org/wiki/Henry_J._M._Barnett.Google Scholar
Spence, JD, Hachinsky, V. Henry J. M. Barnett (1922–2016). Stroke 2017;48(1):24.Google Scholar
Van Horn, G, Grotta, JC. William S. Fields, MD, Texas medical center pioneer. Ann. Neurol. 2004;56(2):314. https://doi.org/10.1002/ana.20167.Google Scholar
Fields, WS, Lemak, NA. A History of Stroke. New York: Oxford University Press, 1989.Google Scholar
Patrono, C, Ciabattoni, G, Patrignani, P, et al. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation 1985;72:11771184.Google Scholar
Wallentin, LC. Aspirin (75 mg/day) after an episode of unstable coronary artery disease: Long-term effects on the risk for myocardial infarction, occurrence of severe angina and the need for revascularization. Research Group on Instability in Coronary Artery Disease in Southeast Sweden. JACC 1991;18:15871593.Google Scholar
SALT Collaborative Group. The Swedish Aspirin Low-Dose Trial. Lancet 1991;338:13451349.Google Scholar
A comparison of two doses of aspirin (30 mg vs. 283 mg a day) in patients after a transient ischemic attack or minor ischemic stroke: The Dutch TIA Trial Study Group. N. Engl. J. Med. 1991;325:1261–1266.Google Scholar
Farrell, B, Godwin, J, Richards, S, Warlow, C. The United Kingdom Transient Ischaemic Attack (UK-TIA) aspirin trial: Final results. J. Neurol. Neurosurg. Psychiatry 1991;54:10441054.Google Scholar
Diener, HC, Cunha, L, Forbes, C, et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J. Neurol. Sci. 1996 Nov;143(1–2):113.Google Scholar
Hart, RG, Harrison, MJG. Aspirin wars: The optimal dose of aspirin to prevent stroke. Stroke 1996;27:585587.Google Scholar
Peto, R, Pike, MC, Armitage, P, et al. Design and analysis of randomised clinical trials requiring prolonged observation of each patient. Br. J. Cancer 1977;35:139.Google Scholar
Peto, R. Editorial: Aspirin and myocardial infarction. Lancet 1980;1:11721173.Google Scholar
Antiplatelet Trialists’ Collaboration. Secondary prevention of vascular disease by prolonged antiplatelet treatment. BMJ 1988;296:320331.Google Scholar
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy – 1. Prevention of death, myocardial infarction and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81106.Google ScholarGoogle Scholar
ISIS-2 (Second international Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. J. Am. Coll. Cardiol. 1988 Dec;12(6 suppl A):3A–13A.Google Scholar
The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet 1997;349:1569–1581.Google Scholar
CAST: Randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet 1997 Jun 7;349(9066):1641–1649.Google Scholar
Sackett, DL, Haynes, RB, Tugwell, P. Clinical Epidemiology: A Basic Science for Clinical Medicine. Boston: Little, Brown, 1985.Google Scholar
Cochrane, A. Effectiveness and Efficiency: Random Reflections on Health Services. The Nuffield Provincial Hospital Trust, 1972.Google Scholar
Qiu, J. Charles Warlow: A career of “successive flukes.” Lancet 2008 Jun;7(6):478.Google Scholar
Djulbegovic, B, Guyatt, GH. Progress in evidence-based medicine: A quarter century on. Lancet 2017;390:415423.CrossRefGoogle ScholarPubMed
GRADE Working Group. The Grades of Recommendation. Assessment, Development and Evaluation Working Group. 2004.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. The stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527539.Google Scholar
Mohr, JP, Thompson, JLP, Lazar, RM, et al. for the Warfarin-Aspirin Recurrent Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 2001;345:14441451.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.Google Scholar
The newer anticoagulants are discussed in Chapter 46.Google Scholar
European Investigators published the results of the European Cooperative Acute Stroke Study (ECASS). Hacke, W, Kaste, M, Fieschi, C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995;274:10171025.Google ScholarGoogle Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995;333:15811587.Google Scholar
Furlan, AJ, Higashida, RT, Wechsler, L, et al. PROACT II. Intra-arterial Pro-urokinase for acute ischemic stroke: A randomized controlled trial. JAMA 1999;282;20032011.Google Scholar
The EC-IC Bypass Study Group. Failure of the extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. N. Engl. J. Med. 1985;313:11911200.Google Scholar
The Asymptomatic Carotid Atherosclerosis Study Group. Study design for randomized prospective trial of carotid endarterectomy for asymptomatic atherosclerosis. Stroke 1989;20:844849.Google Scholar
NASCET Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991;325:445453.Google ScholarGoogle Scholar
Brott, TG, Hobson, RW II, Howard, G, et al. CREST Investigators. Stenting vs endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363:1123.Google ScholarGoogle Scholar
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:14911502. Carotid artery surgery is discussed in Chapter 54 and carotid artery stenting in Chapter 55.Google Scholar
Vahedi, K, Hofmeijer, J, Juettler, E, et al. Early decompressive surgery in malignant middle cerebral artery infarction: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215222.Google Scholar
Chimowitz, M, Lynn, MJ, Derdeyn, CP, et al. for the SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 2011;365:9931003.Google Scholar
Turan, TN, Nizam, A, Lynn, MJ, et al. Relationship between risk factor control and vascular events in the SAMMPRIS trial. Neurology 2017;88(4):379385.Google Scholar
Mohr, JP, Parides, MK, Stapf, C, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet 2014;383 (9917):614621.Google Scholar
Trials that evaluated the safety and effectiveness of endovascular management of acute ischemic stroke are discussed in Chapter 56.Google Scholar

Notes and References

Couch, NP. About heparin, or … whatever happened to Jay McLean? J. Vasc. Surg. 1989 Jul;10(1):18.Google Scholar
Marcum, JA. Discovery of heparin: Contributions of William Henry Howell and Jay McLean. Physiology 1992 Oct;7(5):237242.Google Scholar
Mclean, J. The discovery of heparin. Circulation 1959 Jan;19(1):7578.Google Scholar
McLean, J. The thromboplastic action of cephalin. Am. J. Physiol.-Leg. Content 1916 Aug 1;41(2):250257.Google Scholar
Charles, AF, Scott, DA. Studies on heparin I. The preparation of heparin. J. Biol. Chem. 1933 Oct 1;102(2):425429.Google Scholar
Lever, R, Mulloy, B, Page, C. Heparin: A Century of Progress. Berlin: Springer Healthcare, 2012, pp. 418.Google Scholar
Oduah, EI, Linhardt, RJ, Sharfstein, ST. Heparin: Past, present, and future. Pharmaceuticals (Basel) 2016 Jul 4;9(3):38.Google Scholar
Caplan, L, Saver, J. Treatment. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 170177.Google Scholar
Saxena, R, Lewis, S, Berge, E, Sandercock, PA, Koudstaal, PJ. Risk of early death and recurrent stroke and effects of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial. Stroke 2001;32:23332337.Google Scholar
Resnick, SB, Resnick, SH, Weintraub, JL, Kothary, N. Heparin in interventional radiology: A therapy in evolution. Semin. Interv. Radiol. 2005 Jun;22(2):95107.Google Scholar

Notes and References

Link, KP. The discovery of dicumarol and its sequels. Circulation 1959 Jan 1;19(1):97107.CrossRefGoogle ScholarPubMed
Fields, WS, Lemak, NA. A History of Stroke: Its Recognition and Treatment. New York: Oxford University Press, 1989.Google Scholar
Wardrop, D, Keeling, D. The story of the discovery of heparin and warfarin. Br. J. Haematol. 2008 Jun 1;141(6):757763.Google Scholar
Burris, RH. Karl Paul Link. In Biographical Memoirs, vol. 65. National Academies Press, 1994. Available at www.nap.edu/read/4548/chapter/9.Google Scholar
Meek, T. This month in 1939: How dead cattle led to the discovery of warfarin. PMLive. June 27, 2013. Available at www.pmlive.com/pharma_news/how_dead_cattle_led_to_the_discovery_of_warfarin_485464.Google Scholar
Wessler, S, Gitel, S. Warfarin: From bedside to bench. N. Engl. J. Med. 1984;311:645652.Google Scholar
Deykin, D. Warfarin therapy. N. Engl. J. Med. 1970;283:691694.Google Scholar
Barritt, DW, Jordan, MB. Anticoagulant drugs in the treatment of pulmonary embolism: A controlled trial. Lancet 1960;275:13091312.Google Scholar
Ergermayer, P. Value of anticoagulants in the treatment of pulmonary embolism: A discussion paper. J. Roy. Soc. Med. 1981;74:675681.Google Scholar
Wright, IS, Foley, WT. Use of anticoagulants in the treatment of heart disease with special reference to coronary thrombosis, rheumatic heart disease with thromboembolic complications and subacute bacterial endocarditis. Am. J. Med. 1947;3:718739.Google Scholar
Cosgriff, SW. Prophylaxis of recurrent embolism of intracardiac origin: Protracted anticoagulant therapy on an ambulatory basis. JAMA 1950;143:870872.Google Scholar
Szekely, P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease. Br. Med. J. 1964:1:1209.Google Scholar
McDevitt, E. Treatment of cerebral embolism. Mod. Treat. 1965;2:52.Google Scholar
Fleming, HA, Bailey, SM. Mitral valve disease, systemic embolism and anticoagulants. Postgrad. Med. J. 1971; 47:599604.Google Scholar
Report of the working party on anticoagulant therapy in coronary thrombosis to the Medical Research Council: Assessment of short-term anticoagulant administration after cardiac infarction. Br. Med. J. 1969;1:335.Google Scholar
Kucharski, A. Medical management of political patients: The case of Dwight D. Eisenhower. Perspect. Biol. Med. 1978;22:115126.Google Scholar
Fisher, CM. Anticoagulant therapy in cerebral thrombosis and cerebral embolism. A National Cooperative Study, interim report. Neurology 1961;11:119131.Google Scholar
Baker, RN, Broward, JA, Fang, HC, Fisher, CM, Groch, SN, Heyman, A. Anticoagulant therapy in cerebral infarction. Neurology 1962;12:823835.Google Scholar
Millikan, CH, Siekert, RG, Shick, R. Studies in cerebrovascular disease, III: The use of anticoagulant drugs in the treatment of insufficiency or thrombosis within the basilar arterial system. Proc. Staff Meet. Mayo Clin. 1955;30:111126.Google Scholar
Millikan, CH, Siekert, RG, Whisnant, JP. Anticoagulant therapy in cerebrovascular disease: Current status. JAMA 1958;166:587592.Google Scholar
Whisnant, JP. Discussion. In Millikan, C, Siekert, R, Whisnant, JP (eds.), Cerebral Vascular Diseases: Third Princeton Conference on Cerebrovascular Diseases. Orlando, FL: Grune & Stratton, 1961, pp. 156157.Google Scholar
The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N. Engl. J. Med. 1990;323:15051511.Google Scholar
EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:12551262.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. The stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527539.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet 1994;343:687691.Google Scholar
Albers, GW. Atrial fibrillation and stroke: Three new studies, three remaining questions. Arch. Intern. Med. 1994;154:14431448.CrossRefGoogle ScholarPubMed
Hart, RG, Benavente, O, McBride, R, et al. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: A meta-analysis. Ann. Intern. Med. 1999;131:492501.Google Scholar
Mohr, JP, Thompson, JLP, Lazar, RM, et al. for the Warfarin–Aspirin Recurrent Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 2001;345:14441451.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.Google Scholar
Koroshetz, W. Warfarin, aspirin, and intracranial vascular disease. N. Engl. J. Med. 2005;352:13681370.Google Scholar
Bousser, MG, Ross Russell, R. Cerebral Venous Thrombosis. Philadelphia: WB Saunders, 1997.Google Scholar
Ameri, A, Bousser, MG. Cerebral venous thrombosis. Neurol. Clin. 1992;10:87111.Google Scholar

Notes and References

The development of warfarin and its evolution is discussed at length in Chapter 45.Google Scholar
Rost, S, Fregin, A, Ivaskevicius, V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004;427:537541.Google ScholarGoogle Scholar
Akins, PT, Feldman, HA, Zoble, RG, et al. Secondary stroke prevention with ximelagatran versus warfarin in patients with atrial fibrillation. Pooled analysis of SPORTIF III and V Clinical Trials. Stroke 2007;38:874880.CrossRefGoogle ScholarPubMed
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. and the RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009;361:11391151.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, Pan, G, Singer, DE, Hacke, W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011;365:883891.Google Scholar
Granger, CB, Alexander, JH, McMurray, JJ, Lopes, RD, Hylek, EM, Hanna, M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011;365:981992.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, Murphy, SA, Wiviott, SD, Halperin, JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013;369:20932104.Google Scholar
Eikelboom, JW, Connolly, SJ, Brueckmann, M, et al. for the RE-ALIGN Investigators. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 2013;369:12061214.Google Scholar

Notes and References

Stone, E. XXXII. An account of the success of the bark of the willow in the cure of agues. In a letter to the Right Honourable George Earl of Macclesfield, President of R. S. from the Rev. Mr. Edward Stone, of Chipping-Norton in Oxfordshire. Philos. Trans. 1763 Jan 1;53:195200.Google Scholar
Jack, DB. One hundred years of aspirin. Lancet Lond. Engl. 1997 Aug 9;350(9075):437439.CrossRefGoogle ScholarPubMed
Pearce, JMS. The controversial story of aspirin. World Neurology. December 2, 2014. Available at https://worldneurologyonline.com/article/controversial-story-aspirin/.Google Scholar
Buchanan, WW, Kean, WF. The treatment of acute rheumatism by salicin, by T. J. Maclagan – The Lancet, 1876. J. Rheumatol. 2002 Jun 1;29(6):13211323.Google Scholar
Snead, MW, Aikawa, JK. T. J. Maclagan and the treatment of rheumatic fever with salicin. AMA Arch. Intern. Med. 1958 May 1;101(5):9971004.Google Scholar
Malverde, J. How aspirin turned hero: Heroin, Bayer and Heinrich Dreser. Democratic Underground. Available at www.democraticunderground.com/11701737.Google Scholar
Lichterman, BL. Aspirin: The story of a wonder drug. BMJ 2004 Dec 11;329(7479):1408.Google Scholar
Miner, J, Hoffhines, A. The discovery of aspirin’s antithrombotic effects. Tex. Heart Inst. J. 2007;34(2):179186.Google Scholar
Craven, LL. Coronary thrombosis can be prevented. J. Insurance Med. 1950;5:4748.Google Scholar
Craven, LL. Experiences with aspirin (acetylsalicylic acid) in the nonspecific prophylaxis of coronary thrombosis. Miss. Valley Med. J. 1953;75:3844.Google Scholar
Craven, LL. Prevention of coronary and cerebral thrombosis. Miss. Valley Med. J. 1956;78:213215.Google Scholar
Weiss, HJ, Aledort, LM, Kochwa, S. The effect of salicylates on the hemostatic properties of platelets in man. J. Clin. Invest. 1968;47:21692180.Google Scholar
Vane, JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971;231:232235.Google Scholar
ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2:349360.Google Scholar
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:7186.Google Scholar
Bell, AD, Roussin, A, Cartier, R, Chan, WS, Douketis, JD, Gupta, A, Kraw, ME, Lindsay, TF, Love, MP, Pannu, N, Rabasa-Lhoret, R, Shuaib, A, Teal, P, Théroux, P, Turpie, AG, Welsh, RC, Tanguay, JF. The use of antiplatelet therapy in the outpatient setting: Canadian Cardiovascular Society Guidelines Executive Summary. Can. J. Cardiol. 2011;27:208221.Google Scholar
Graham, I, Atar, D, Borch-Johnson, K, et al. for the ESC Committee for Practice Guidelines. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary. Atherosclerosis 2007;194:145.Google Scholar
US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2009;150:396404.Google Scholar
Vandvik, PO, Lincoff, AM, Core, JM, et al. for American College of Chest Physicians. Primary and secondary prevention of cardiovascular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed.: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e637Se668S.Google Scholar
Mundall, J, Quintero, P, von Kaulla, K, et al. Transient monocular blindness and increased platelet aggregability treated with aspirin: A case report. Neurology 1971;21:402.Google Scholar
Harrison, MJG, Marshall, J, Meadows, JC, et al. Effect of aspirin in amaurosis fugax. Lancet 1971;2:743744.Google Scholar
Fields, WS, Lemak, N, Frankowski, R, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke 1977;8:301306.Google Scholar
Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N. Engl. J. Med. 1978;299:5359.Google Scholar
UK-TIA Study Group. The UK-TIA Aspirin Trial: The interim results. BMJ 1988;296:316320.Google Scholar
The SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischemic events. Lancet 1991;338:13451349.Google Scholar
The Dutch TIA Trial Study Group. A comparison of two doses of aspirin (30 mg vs 283 mg a day) in patients after a transient ischemic attack or minor stroke. N. Engl. J. Med. 1991;325:12611266.Google Scholar
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy. 1. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81106.Google Scholar
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;524:7186.Google Scholar

Notes and References

Coller, BS. Historical perspective and future directions in platelet research. J. Thromb. Haemost. 2011;9(suppl 1):374395.Google Scholar
Bizzozero, G. Su di un nuovo elemento morfologico del sangue dei mammiferi e della sua importanza nella trombosi e nella coagulazione. L’Osservatore 1881;17:785787.Google ScholarGoogle Scholar
Osler, W. On certain problems in the physiology of the blood corpuscles. Med. News 1886;48:421425. The stroke contributions of Sir William Osler and his medical textbooks are discussed further in Chapter 14.Google Scholar
Gustav Victor Rudolf Born. Wikipedia. Available at https://en.wikipedia.org/wiki/Gustav_Victor_Rudolf_Born.Google Scholar
Born, GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927929.Google ScholarGoogle Scholar
Brownlee, C. Biography of Barry S. Coller. Proc. Natl. Acad. Sci. U.S.A 2004 Sep 7;101(36):1311113113.Google Scholar
The history and evolution of the antiplatelet introduction of aspirin by Bayer is discussed in detail in Chapter 46.Google Scholar
Personal communication from Wolfgang Eisert, who directed dipyridamole research at Boehringer-Ingelheim.Google Scholar
Eisert, W, Gruber, P. Pharmaceutical compositions containing dipyridamole or mopidamol and acetylsalicylic acid or the physiologically acceptable salts thereof, processes for preparing them and their use in treating clot formation. US Patent 6015577A. https://patents.google.com/patent/US6015577A/en.Google Scholar
Sullivan, J, Harken, D, Gorlin, R. Pharmacologic control of thromboembolic complications of aortic valve replacement. N. Engl. J. Med. 1971;284:13911394.Google Scholar
Fields, WS, Yatsu, F, Conomy, J, et al. Persantine-aspirin trial in cerebral ischemia: The American-Canadian Cooperative Study group. Stroke 1983;14:97103.Google ScholarGoogle Scholar
ESPS Group. European Stroke Prevention Study (ESPS): Principal endpoints. Lancet 1987; 2:13511354.Google ScholarGoogle Scholar
The ESPRIT Study group. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): Randomized controlled trial. Lancet 2006;367:16651673.Google Scholar
Verro, P, Gorelick, PB, Nguyen, D. Aspirin plus dipyridamole versus aspirin for prevention of vascular events after stroke or TIA: A meta-analysis. Stroke 2008;39(4):13581363.Google Scholar
Ikeda, Y, Kikuchi, M, Murakami, H. Comparison of the inhibitory effects of cilostazole, acetylsalicylic acid, and ticlopidine on platelet function ex vivo: Randomized, double-blind cross-over study. Drug Res. 1987;37:563566.Google ScholarGoogle Scholar
Gotoh, F, Tohgi, H, Hirai, S, et al. Cilostazole stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J. Stroke Cerebrovasc. Dis. 2000;9:147157.Google Scholar
Kwon, SU, Cho, Y-J, Koo, J-S, et al. Cilostazole prevents the progression of the symptomatic intracranial stenosis: The multicenter double-blind placebo-controlled trial of cilostazole in symptomatic intracranial arterial stenosis. Stroke 2005;36:782786.Google Scholar
Quinn, MJ, Fitzgerald, DJ. Ticlopidine and clopidogrel. Circulation 1999;100:16671672.Google ScholarGoogle Scholar
Hass, WK, Easton, JD, Adams, HP Jr, Pryse-Phillips, W, Molony, BA, Anderson, S, et al. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. Ticlopidine Aspirin Stroke study group. N. Engl. J. Med. 1989;321:501507.Google ScholarGoogle Scholar
Maffrand, JP. The story of clopidogrel and its predecessor, ticlopidine: Could these major antiplatelet and antithrombotic drugs be discovered and developed today? C. R. Chim. 2012;15(8):737743.Google Scholar
A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE steering committee. Lancet 1996;348:1329–1339.Google Scholar
Diener, HC, Bogousslavsky, J, Brass, LM, Cimminiello, C, Csiba, L, Kaste, M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, double-blind, placebo-controlled trial. Lancet 2004;364:331337.Google ScholarGoogle Scholar
Bhatt, DL, Fox, KA, Hacke, W, Berger, PB, Black, HR, Boden, WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N. Engl. J. Med. 2006;354:17061717.Google Scholar
Wang, Y, Wang, Y, Zhao, X, et al. and Johnston SC for the CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 2013;369:113.Google Scholar
Johnston, SC, Easton, JD, Farrant, M, et al. for the Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N. Engl. J. Med. 2018;379:215225.Google Scholar
Johnston, SC, Amarenco, P, Albers, GW, et al. for the SOCRATES Steering Committee and Investigators. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N. Engl. J. Med. 2016;375:3543.Google Scholar
Johnston, SC, Amarenco, P, Denison, H, et al. for the THALES Investigators. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N. Engl. J. Med. 2020;383:207217.Google Scholar
Coller, BS. Anti-GPIIb/IIIa drugs: Current strategies and future directions. Thromb. Haemost. 2001;86(1):427443.Google Scholar
Lefkovits, J, Plow, EF, Topol, EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N. Engl. J. Med. 1995;332:15531559.Google Scholar
Adams, HP Jr, Effron, MB, Torner, J, Davalos, A, Frayne, J, Teal, P, et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: Results of an international phase III trial: Abciximab in emergency treatment of stroke trial (AbESTT-II). Stroke 2008;39:8799.Google Scholar
Topol, EJ, Easton, D, Harrington, RA, Amarenco, P, Califf, RM, Graffagnino, C, et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation 2003;108:399406.Google Scholar

Notes and References

Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2014, pp. 215216.Google Scholar
O’Rourke, MF. Frederic Akbar Mahomed. Hypertension 1992;19:212217.Google ScholarGoogle Scholar
Samuel Siegfried Karl von Basch (1837–1905). Nature 1937;140:393–394.Google Scholar
Bruenn, HG. Clinical notes on the illness and death of president Franklin D. Roosevelt. Ann. Intern. Med. 1970;72:579591.Google Scholar
Smithwick, R. H. Hypertensive cardiovascular disease: Effect of thoracolumbar splanchnicectomy on mortality and survival rates. JAMA 1951;147:16111615.Google Scholar
Saklayen, MG, Deshpande, N. Timeline of history of hypertension treatment. Front. Cardiovasc. Med. 2016;3:3. doi: 10.3389/fcvm.2016.00003.Google ScholarGoogle Scholar
Guyton, AC. Blood pressure control: Special role of kidneys and body fluid. Science 1991;252:18131816.Google Scholar
Freis, ED, Wanko, A, Wilson, IM, Parrish, AE. Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. JAMA 1958;166:137140.Google Scholar
Black, James W.. Lindau Nobel Laureate Meetings. Available at www.mediatheque.lindau-nobel.org/laureates/black.Google Scholar
Castle, WB. George Richards Minot. Biographical Memoirs of the National Academy of Sciences 1974;45:337383.Google Scholar
Obituary. Joslin, Elliott P.. Br. Med. J. 1962;1:729.Google Scholar
Joslin, EP. The prevention of diabetes mellitus. JAMA 1921;76(2):7984.Google Scholar
Rosenfeld, L. Insulin: Discovery and controversy. Clin. Chem. 2002;48:22702288.Google ScholarGoogle Scholar
White, JR Jr. A brief history of the development of diabetes medications. Diabetes Spectr. 2014;27(2):8286.Google Scholar
Reaven, G. Syndrome X, a short history. Ochsner J. 2001;3(3):124125.Google ScholarGoogle ScholarGoogle Scholar
Kannel, WB, Dawber, TR, Friedman, GD, Glennon, WE, McNamara, PM. Risk factors in coronary heart disease: An evaluation of several serum lipids as predictors of coronary heart disease; the Framingham Study. Ann. Intern. Med. 1964;61:888899.Google Scholar
Golding, SS, Allen, NB. Cholesterol and atherosclerotic cardiovascular disease: A lifelong problem. J. Am. Heart Assoc. 2019;8(11):e012924.Google Scholar
Duncan, MS, Vasan, RS, Xanthakis, V. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all‐cause mortality: Observations from the Framingham Study over 35 years. J. Am. Heart Assoc. 2019;8:e011433.Google Scholar
Goldstein, Joseph L., biographical. The Nobel Prize. Available at www.nobelprize.org/prizes/medicine/1985/goldstein/biographical/.Google Scholar
Goldstein, JL, Brown, MS. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009;29(4):431438.Google Scholar
Brown, Michael S., biographical. The Nobel Prize. Available at www.nobelprize.org/prizes/medicine/1985/brown/biographical/.Google Scholar
Endo, A. A historical perspective on the discovery of statins. Proc. Japan Academy Ser. B Phys. Biol. Sci. 2010;86(5):484493.Google ScholarGoogle ScholarGoogle Scholar
Amarenco, P, Goldstein, LB, Szarek, M, et al. Effects of intense low-density lipoprotein cholesterol reduction in patients with stroke or transient ischemic attack: The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke 2007;38:31983204.Google ScholarGoogle Scholar
Karatasakis, A, Danek, B, Karacsonyi, J, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc. 2017;6(12):e006910. doi: 10.1161/JAHA.117.006910.Google ScholarGoogle Scholar
Banach, M, Duell, PB, Gotto, AM Jr, et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 2020 Jul 1. doi: 10.1001/jamacardio.2020.2314 (Epub ahead of print).Google Scholar

Notes and References

Breathnach, CS, Moynihan, JB. Intensive care 1650: The revival of Anne Greene (c. 1628–59). J. Med. Biogr. 2009;17:3538.Google Scholar
Drake, CG, Barr, HW, Coles, JC, Gergely, NF. The use of extracorporeal circulation and profound hypothermia in the treatment of ruptured intracranial aneurysm. J. Neurosurg. 1964;21:575581.Google ScholarGoogle Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002;346:557563.Google ScholarGoogle Scholar
van der Worp, HB, de Haan, P, Morrema, E, Kalkman, CJ. Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J. Neurol. 2005;252:11081114.Google Scholar
Spielmeyer, W. Zur pathogenese örtlich elektiver grehirnveränderungen. Zeitschrift für die gesamte Neurologie und Psychiatrie 1925;99:756776.Google Scholar
Pulsinelli, WA, Brierley, JB, Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 1982;11:491498.Google Scholar
Diemer, NH, Jorgensen, MB, Johansen, FF, Sheardown, M, Honore, T. Protection against ischemic hippocampal CA1 damage in the rat with a new non-NMDA antagonist, NBQX. Acta Neurol. Scand. 1992;86:4549.Google ScholarGoogle Scholar
Ito, U, Spatz, M, Walker, JT Jr, Klatzo, I. Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol. 1975;32:209223.Google ScholarGoogle Scholar
Petito, CK, Feldmann, E, Pulsinelli, WA, Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987;37:12811286.Google Scholar
Paulson, OB, Hossman, K-A, Ingvar, M, Sokoloff, L. In memoriam: Bo K. Siesjö, 1930–2013. J. Cereb. Blood Flow Metab. 2014;34(1):1.Google ScholarGoogle Scholar
Posner, JB. Fred Plum, MD (1924–2010). Arch. Neurol. 2010;67(11):14091410.Google Scholar
Branston, NM, Symon, L, Crockard, HA, Pasztor, E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 1974;45:195208.Google ScholarGoogle Scholar
Symon, LN, Branston, M, Strong, AJ, Hope, TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1977;11:149154.Google Scholar
Baron, JC. Mapping the ischaemic penumbra with PET: Implications for acute stroke treatment. Cerebrovasc. Dis. 1999;9:193201.Google ScholarGoogle ScholarGoogle Scholar
Ginsberg, MD, Busto, R. Rodent models of cerebral ischemia. Stroke 1989;20:16271642.Google ScholarGoogle Scholar
Brown, AW, Brierley, JB. The earliest alterations in rat neurones and astrocytes after anoxia-ischaemia. Acta Neuropathol. 1973;23:922.Google ScholarGoogle Scholar
Abe, K, Aoki, M, Kawagoe, J, et al. Ischemic delayed neuronal death: A mitochondrial hypothesis. Stroke 1995;26:14781489.Google Scholar
Dirnagl, U, Simon, RP, Hallenbeck, JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248254.Google ScholarGoogle Scholar
Chamorro, A, Lo, EH, Renù, A, van Leyden, K, Lyden, P. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 2021;92(2):129135.Google Scholar
Krams, MK, Lees, R, Hacke, W, Grieve, AP, Orgogozo, JM, Ford, GA, and ASTIN study investigators. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): An adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 2003;34:25432548.Google Scholar
Hall, CN, Reynell, C, Gesslein, B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014;508:5560.Google Scholar
Rothman, SM, Olney, JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 1986;19:105111.Google Scholar
Choi, DW, Rothman, SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 1990;13:171182.CrossRefGoogle ScholarPubMed
Simon, RP, Swan, JH, Griffiths, T, Meldrum, BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984;226:850852.Google Scholar
Gill, R, Foster, AC, Woodruff, GN. Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J. Neurosci. 1987;7:33433349.Google Scholar
Buchan, A, Pulsinelli, WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J. Neurosci. 1990;10:311316.Google Scholar
Nellgard, B, Wieloch, T. Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulin-induced hypoglycemia. Exp. Brain Res. 1992;92:259266.Google Scholar
Takizawa, S, Hogan, M, Hakim, AM. The effects of a competitive NMDA receptor antagonist (CGS-19755) on cerebral blood flow and pH in focal ischemia. J. Cereb. Blood Flow Metab. 1991;11:786793.Google ScholarGoogle Scholar
Sheardown, MJ, Suzdak, PD, Nordholm, L. AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. Eur. J. Pharmacol. 1993;236:347353.Google ScholarGoogle Scholar
Siesjo, BK, Agardh, CD, Bengtsson, F. Free radicals and brain damage. Cerebrovasc. Brain Metab. Rev. 1989;1:165211.Google Scholar
Lees, KR, Zivin, JA, Ashwood, T, et al. for the Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. NXY-059 for acute ischemic stroke. N. Engl. J. Med. 2006;354:588600.Google Scholar
Shuaib, A, Lees, KR, Lyden, P et al., and Saint Il Trial Investigators. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med. 2007;357:562571.Google Scholar
Belayev, L, Liu, Y, Zhao, W, Busto, R, Ginsberg, MD. Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001;32:553560.Google Scholar
Martin, RH, Yeatts, SD, Hill, MD, et al. and ALIAS Parts 1 and 2 and Nett Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: Analysis of the combined data from parts 1 and 2. Stroke 2016;47:23552359.Google Scholar
Shuaib, A, Bornstein, NM, Diener, HC, et al. and Sentis trial investigators. Partial aortic occlusion for cerebral perfusion augmentation: Safety and efficacy of NeuroFlo in Acute Ischemic Stroke trial. Stroke 2011;42:16801690.Google Scholar
Fisher, M, Feuerstein, G, Howells, DW, et al. STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009;40(6):22442250.Google Scholar
Hill, MD, Goyal, M, Menon, BK, et al. and Escape-Na Investigators. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): A multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878887.Google Scholar
Hill, MD, Martin, RH, Mikulis, D, et al. and ENACT trial investigators. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11:942950.Google Scholar
Karnatovskaia, LV, Wartenberg, KE, Freeman, WD. Therapeutic hypothermia for neuroprotection: History, mechanisms, risks, and clinical applications. Neurohospitalist 2014;4:153163.Google Scholar
Bigelow, WG, Lindsay, WK, Greenwood, WF. Hypothermia, its possible role in cardiac surgery: An investigation of factors governing survival in dogs at low body temperatures. Ann. Surg. 1950;132:849866.Google Scholar
van der Worp, HB, Sena, ES, Donnan, GA, Howells, DW, Macleod, MR. Hypothermia in animal models of acute ischaemic stroke: A systematic review and meta-analysis. Brain 2007;130:30633074.Google Scholar
De Georgia, MA, Krieger, DW, Abou-Chebl, A, et al. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004;63:312317.Google Scholar
Hemmen, TM, Raman, R, Guluma, KZ, et al. and ICTuS-L Investigators. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010;41:22652270.Google Scholar
Horn, CM, Sun, CH, Nogueira, RG, et al. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J. Neurointerv. Surg. 2014;6:9195.Google Scholar
Lyden, P, Hemmen, T, Grotta, J, et al. and collaborators. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke 2016;47:28882895.Google Scholar
van der Worp, HB, Macleod, MR, Bath, PMW, et al. and the EuroHYP-1 Investigators. Therapeutic hypothermia for acute ischaemic stroke: Results of a European multicentre, randomised, phase III clinical trial. Eur. Stroke J. 2019;4:254262.Google Scholar
Lougheed, WM, Kahn, DS. Circumvention of anoxia during arrest of cerebral circulation for intracranial surgery. J. Neurosurg. 1955;12:226239.Google Scholar
Schwartz, AE, Stone, JG, Finck, AD, et al. Isolated cerebral hypothermia by single carotid artery perfusion of extracorporeally cooled blood in baboons. Neurosurgery 1996;39:577581; discussion 81–82.Google Scholar

Notes and References

The early history of thrombolysis, streptokinase, and tPA is discussed in Maroo, A, Topol, EJ. The early history and development of thrombolysis in acute myocardial infarction. J. Thromb. Haemostasis 2004;2:18671870.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Zivin, JA, Simmons, JG. tPA for Stroke: The Story of a Controversial Drug. New York: Oxford University Press, 2011.Google Scholar
Bryan, TPJ. The rise and fall of the clot buster: A review on the history of streptokinase. Pharm. J. 2014. Available at www.pharmaceutical-journal.com/news-and-analysis/features/the-rise-and-fall-of-the-clot-buster-a-review-on-the-history-of-streptokinase/20065679.article.Google Scholar
Sherry, S. The origin of thrombolytic therapy. J. Am. Coll. Cardiol. 1989 Oct 1;14(4):10851092.Google Scholar
DeWood, MA, Spores, J, Notske, R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980;303:897902.Google Scholar
Meyer, JS, Gilroy, J, Barnhart, MI, Johnson, JF. Therapeutic thrombolysis in cerebral thromboembolism. Neurology 1963;13:927937.Google ScholarGoogle ScholarGoogle Scholar
Donnan, GA, Davis, SM, Chambers, BR, et al. Streptokinase for acute ischemic stroke with relationship to time of administration: Australian Streptokinase (ASK) Trial Study Group. JAMA 1996;276(12):961966.Google Scholar
Multicenter Acute Stroke Trial-Europe Study Group: Hommel, M, Cornu, C, Boutitie, F, Boissel, JP. Thrombolytic therapy with streptokinase in acute ischemic stroke. N. Engl. J. Med. 1996;335(3):145150.Google Scholar
Fletcher, AP, Alkjersig, N, Lewis, M, Tulevski, V, Davies, A, Brooks, JE, Hardin, WB, Landau, WM, Raichle, ME. A pilot study of urokinase therapy in cerebral infarction. Stroke 1976;7:135142.Google Scholar
Collen, D, Lijnen, HR. Tissue-type plasminogen activator: A historical perspective and personal account. J. Thromb. Haemostasis 2004;2(4):541546.Google Scholar
Van de Werf, F, Ludbrook, PA, Bergmann, SR, et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. N. Engl. J. Med. 1984;310:609613.Google ScholarGoogle Scholar
The early investigations of thrombolytic therapy are reviewed in del Zoppo, GJ, Poeck, K, Pessin, MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann. Neurol. 1992;32:7886.Google ScholarGoogle ScholarGoogle Scholar
Brott, T, Haley, EC, Levy, DE, et al. Urgent therapy for stroke: Pilot study of tissue plasminogen activator administered within 90 minutes. Stroke 1992;23:632640.Google ScholarGoogle Scholar
Levy, DE, Brott, TG, Haley, EC, et al. Factors related to intracranial hematoma formation in patients receiving t-PA for acute, ischemic stroke. Stroke 1994;25:291297.Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995;333:15811587.Google Scholar
Kwatkowski, TG, Libman, RB, Frankel, M, et al. Effects of tissue plasminogen activator for acute ischemic stroke at one year. N. Engl. J. Med. 1999;340(23):17811787.Google Scholar
Brott, T, Adams, HP Jr, Olinger, CP, et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989;20(7):864870.Google ScholarGoogle Scholar
The European Investigators published the results of the European Cooperative Acute Stroke Study (ECASS). Hacke, W, Kaste, M, Fieschi, C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995;274:10171025.Google ScholarGoogle ScholarGoogle Scholar
Toni, D, Lorenzano, S, Puca, E, Prencipe, M. The SITS-MOST registry. Neurol. Sci. 2006;27(suppl 3):S260S262.Google ScholarGoogle Scholar
Caplan, LR, Mohr, JP, Kistler, JP, Koroshetz, W. Thrombolysis: Not a panacea for ischemic stroke. N. Engl. J. Med. 1997;337:13091310, 1313.Google ScholarGoogle Scholar
Bhatia, R, Hill, MD, Shobha, N, Menon, B, Bal, S, Kochar, P, Watson, T, Goyal, M, Demchuk, AM. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: Real-world experience and a call for action. Stroke 2010;41:22542258.Google Scholar
Thomalla, G, Simonsen, CZ, Boutitie, F, et al. WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset. N. Engl. J. Med. 2018;379(7):611622.Google ScholarGoogle Scholar
Nogueira, RG, Jadhay, AP, Hausen, DG, et al. for the DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018;378:1121.Google ScholarGoogle Scholar
Van de Werf, F, Cannon, CP, Luyten, A, et al. Safety assessment of single bolus administration of TNK-tPA in acute myocardial infarction: The ASSENT-1 trial. Am. Heart J. 1999;137:786791.Google ScholarGoogle Scholar
Huang, X, MacIsaac, R, Thompson, JL, Levin, B, Buchsbaum, R, Haley, EC, et al. Tenecteplase versus alteplase in stroke thrombolysis: An individual patient data meta-analysis of randomized controlled trials. Int. J. Stroke 2016 11:534543.Google ScholarGoogle ScholarGoogle Scholar
Hacke, W, Zeumer, H, Ferbert, A, Bruckman, H. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1998;29:12161222.Google Scholar
del Zoppo, GJ, Higashida, RT, Furlan, AJ, et al. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke 1998;29:411.Google Scholar
Furlan, AJ, Higashida, RT, Wechsler, L, et al. PROACT II. Intra-arterial pro-urokinase for acute ischemic stroke: A randomized controlled trial. JAMA 1999;282;20032011.Google Scholar
Furlan, AJ, Higashida, R, Katzan, I, Abou-Chebl, A, Russman, A. Intra-arterial thrombolysis in acute ischemic stroke. In Lyden, PD (ed.), Thrombolytic Therapy for Acute Stroke, 2nd ed. Totowa, NJ: Humana Press, 2005, pp. 159184.Google Scholar
Lindberg, PJ, Mattle, HP. Therapy of basilar artery occlusion: A systematic analysis comparing intra-aerterial and intravenous thrombolysis. Stroke 2006;37:922928.Google ScholarGoogle Scholar

Notes and References

Ribes, MF. Des recherches faites sur la phlebite. In Revue Médicale Francaise et Etrangere et Journal de Clinique de l’Hotel-Dieu et de la Charité de Paris. 1825, vol. 3, pp. 541.Google Scholar
Plarr’s Lives of the Fellows. Frederick Ross Stansfield. The Royal College of Surgeons of England. Available at https://livesonline.rcseng.ac.uk/client/en_GB/lives/search/detailnonmodal/ent:$002f$002fSD_ASSET$002f0$002fSD_ASSET:379868/one.Google Scholar
Stansfield, FR. Puerperal cerebral thrombophlebitis treated by heparin. Br. Med. J. 1942;1(4239):436438.Google Scholar
Ronald Arthur Jones. Royal College of Physicians. Available at https://history.rcplondon.ac.uk/inspiring-physicians/ronald-arthur-jones.Google Scholar
Crafoord, C. Preliminary report on post-operative treatment with heparin as a preventive of thrombosis. Acta Chir. Scand. 1937(79):407426.Google Scholar
Van Creveld, S, De Bruyne, JI, Stronk, MG. [Thrombosis of the superior sinus longitudinalis in an infant treated with heparin and intravenous fluid supply]. Ned. Tijdschr. Geneeskd. 1949;93(15):11441148.Google Scholar
Holub, K. [Intracranial venous thrombosis and thrombophlebitis]. Wien Klin. Wochenschr. 1953;65(26):540541.Google Scholar
Cairns, DR, Melton, G. Thrombosis of cerebral veins in the puerperium. Br. Med. J. 1942;1(4239):439.Google Scholar
Ehrenmitgliedschaft Prof. Dr. Karl Max Einhäupl. Charite – Universitätsmedizin Berlin. Available at https://alumni.charite.de/start_unterseiten/prof_dr_k_m_einhaeupl_ehrenmitglied/.Google Scholar
Einhäupl, KM, Villringer, A, Meister, W, Mehraein, S, Garner, C, Pellkofer, M, et al. Heparin treatment in sinus venous thrombosis. Lancet 1991;338(8767):597600.Google Scholar
Stam, J, Lensing, AWA, Vermeulen, M, Tijssen, JGP. Heparin treatment for cerebral venous and sinus thrombosis. Lancet 1991;338(8775):1154.Google Scholar
Vermeulen, M, Stam, J, Hijdra, A, van Gijn, J. In memoriam Prof. Dr. H. van Crevel. August 26, 2002. Available at www.ntvg.nl/artikelen/memoriam-profdrhvan-crevel/volledig.Google Scholar
Based on an interview with Prof. dr. Jan Stam.Google Scholar
de Bruijn, SF, Stam, J. Randomized, placebo-controlled trial of anticoagulant treatment with low-molecular-weight heparin for cerebral sinus thrombosis. Stroke 1999;30(3):484488.Google Scholar
Coutinho, JM, Stam, J. How to treat cerebral venous and sinus thrombosis. J. Thromb. Haemost. 2010;8(5):877883.Google Scholar
Stam, J, De Bruijn, SF, DeVeber, G. Anticoagulation for cerebral sinus thrombosis. Cochrane Database Syst Rev. 2002(4):Cd002005.Google ScholarGoogle ScholarGoogle Scholar
Bousser, MG. Cerebral venous thrombosis: Nothing, heparin, or local thrombolysis? Stroke 1999;30(3):481483.Google Scholar
Bousser, MG, Eschwege, E, Haguenau, M. Aspirin and stroke prevention. Lancet 1988;1(8578):179.Google Scholar
Cabut, S. Marie-Germaine Bousser, reine de la neurologie. Le Monde, January 3, 2013. Available at www.lemonde.fr/sciences/article/2013/01/03/marie-germaine-bousser-reine-de-la-neurologie_1812632_1650684.html.Google Scholar
The Brain Prize: Marie-Germaine Bousser. Lundbeckfonden. Available at https://lundbeckfonden.com/marie-germaine-bousser. The education and career of Dr. Bousser is also included in Chapter 21.Google Scholar
Ferro, JM, Canhão, P, Stam, J, Bousser, MG, Barinagarrementeria, F. Prognosis of cerebral vein and dural sinus thrombosis: Results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004;35(3):664670.Google Scholar
Einhäupl, K, Stam, J, Bousser, MG, De Bruijn, SF, Ferro, JM, Martinelli, I, et al. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur. J. Neurol. 2010;17(10):12291235.Google Scholar
The Columbus Investigators. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism. N. Engl. J. Med. 1997;337(10):657662.Google ScholarGoogle Scholar
Coutinho, JM, Seelig, R, Bousser, MG, Canhão, P, Ferro, JM, Stam, J. Treatment variations in cerebral venous thrombosis: An international survey. Cerebrovasc. Dis. 2011;32(3):298300.Google Scholar
Vines, FS, Davis, DO. Clinical-radiological correlation in cerebral venous occlusive disease. Radiology 1971;98(1):922.Google Scholar
Di Rocco, C, Iannelli, A, Leone, G, Moschini, M, Valori, VM. Heparin-urokinase treatment in aseptic dural sinus thrombosis. Arch. Neurol. 1981;38(7):431435.Google Scholar
Scott, JA, Pascuzzi, RM, Hall, PV, Becker, GJ. Treatment of dural sinus thrombosis with local urokinase infusion: Case report. J. Neurosurg. 1988;68(2):284287.Google Scholar
Kim, SY, Suh, JH. Direct endovascular thrombolytic therapy for dural sinus thrombosis: Infusion of alteplase. AJNR Am. J. Neuroradiol. 1997;18(4):639645.Google Scholar
Caso, V, Billeci, AM, Leys, D. Interventional neuroradiology in the treatment of cerebral venous thrombosis. Front. Neurol. Neurosci. 2008;23:144160.Google Scholar
Coutinho, JM, van den Berg, R, Zuurbier, SM, Majoie, CB, Stam, J. Mechanical thrombectomy cannot be considered as first-line treatment for cerebral venous thrombosis. J. Neurointerv. Surg. 2013;5(6):621622.Google Scholar
Stam, J, Majoie, CB, van Delden, OM, van Lienden, KP, Reekers, JA. Endovascular thrombectomy and thrombolysis for severe cerebral sinus thrombosis: A prospective study. Stroke 2008;39(5):14871490.Google Scholar
Coutinho, JM, Zuurbier, SM, Bousser, MG, Ji, X, Canhão, P, Roos, YB, et al. Effect of endovascular treatment with medical management vs standard care on severe cerebral venous thrombosis: The TO-ACT randomized clinical trial. JAMA Neurol. 2020;77(8):966973.Google Scholar
Canhão, P, Ferro, JM, Lindgren, AG, Bousser, MG, Stam, J, Barinagarrementeria, F. Causes and predictors of death in cerebral venous thrombosis. Stroke 2005;36(8):17201725.Google Scholar
Ferro, JM, Bousser, M-G, Canhão, P, Coutinho, JM, Crassard, I, Dentali, F, et al. European Stroke Organization guideline for the diagnosis and treatment of cerebral venous thrombosis – Endorsed by the European Academy of Neurology. European J. Neurol. 2017;24(10):12031213.Google Scholar
Milandre, L, Gueriot, C, Girard, N, Ali Cherif, A, Khalil, R. [Cerebral venous thrombosis in adults. Diagnostic and therapeutic aspects in 20 cases]. Ann. Med. Interne (Paris) 1989;139(8):544554.Google Scholar
Riva, N, Carrier, M, Gatt, A, Ageno, W. Anticoagulation in splanchnic and cerebral vein thrombosis: An international vignette-based survey. Res. Pract. Thromb. Haemost. 2020;4(7):11921202.Google Scholar
Ferro, JM, Coutinho, JM, Dentali, F, Kobayashi, A, Alasheev, A, Canhão, P, et al. Safety and efficacy of dabigatran etexilate vs dose-adjusted warfarin in patients with cerebral venous thrombosis: A randomized clinical trial. JAMA Neurol. 2019;76(12):14571465.Google Scholar
Lurkin, A, Derex, L, Fambrini, A, Bertoletti, L, Epinat, M, Mismetti, P, et al. Direct oral anticoagulants for the treatment of cerebral venous thrombosis. Cerebrovasc. Dis. 2019;48(1–2):3237.Google Scholar

Notes and References

Lanska, DJ. The historical origins of stroke rehabilitation. In Stein, J, Harvey, RL, Macko, RF, Winstein, CJ, Zorowitz, RD (eds.), Stroke Recovery and Rehabilitation. New York: Demos Medical Publishing, 2009, pp. 330.Google Scholar
Rusk, HA. A World to Care For: The Autobiography of Howard A. Rusk, M.D. Random House, 1972.Google Scholar
Taub, E. Foreword for neuroplasticity and neurorehabilitation. Front. Hum. Neurosci. 2014 Jul 24;8. Available at www.ncbi.nlm.nih.gov/pmc/articles/PMC4109562/.Google Scholar
Doidge, N. The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science. Penguin UK, 2008.Google Scholar
Over the Horizon. The Brain That Changes Itself – Full documentary. YouTube. May 26, 2013. Available at www.youtube.com/watch?v=bFCOm1P_cQQ.Google Scholar
Taub, E, Uswatte, G. Constraint-induced movement therapy: Bridging from the primate laboratory to the stroke rehabilitation laboratory. J. Rehabil. Med. 2003 May;(41 Suppl):3440.Google Scholar
Kwakkel, G, Veerbeek, JM, van Wegen, EEH, Wolf, SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015 Feb;14(2):224234.Google ScholarGoogle ScholarGoogle Scholar
Unnecessary Fuss. Wikipedia. Available at https://en.wikipedia.org/wiki/Unnecessary_Fuss.Google Scholar
Claflin, ES, Krishnan, C, Khot, SP. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 2015 Apr;5(2):7788.Google Scholar
Boonzaier, J, van Tilborg, GAF, Neggers, SFW, Dijkhuizen, RM. Noninvasive brain stimulation to enhance functional recovery after stroke: Studies in animal models. Neurorehabil. Neural Repair 2018 Nov;32(11):927940.Google Scholar
Gallese, V, Fadiga, L, Fogassi, L, Rizzolatti, G. Action recognition in the premotor cortex. Brain 1996;119(2):593609.Google Scholar
Ramachandran, VS, Altschuler, EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009 Jul 1;132(7):16931710.Google Scholar
Tosi, G, Romano, D, Maravita, A. Mirror box training in hemiplegic stroke patients affects body representation. Front. Hum. Neurosci. 2018 Jan 4;11. Available at www.ncbi.nlm.nih.gov/pmc/articles/PMC5758498/.Google Scholar
Norton, A, Zipse, L, Marchina, S, Schlaug, G. Melodic intonation therapy: Shared insights on how it is done and why it might help. Ann. N Y Acad. Sci. 2009 Jul;1169:431436.Google Scholar
Tamplin, J, Baker, FA, Jones, B, Way, A, Lee, S. “Stroke a Chord”: The effect of singing in a community choir on mood and social engagement for people living with aphasia following a stroke. NeuroRehabilitation 2013;32. Available at https://pubmed.ncbi.nlm.nih.gov/23867418/.Google Scholar
Cramer, SC, Caplan, LR. Recovery, rehabilitation and repair. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. New York: Cambridge University Press, 2016, pp. 608626.Google Scholar
Kondziolka, D, Steinberg, GK, Wechsler, L, Meltzer, CC, Elder, E, Gebel, J, et al. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J. Neurosurg. 2005;103:3845.Google ScholarGoogle ScholarGoogle Scholar

Notes and References

Fisher, CM. Occlusion of the internal carotid artery. AMA Arch. Neurol. Psychiatry 1951;65:346377.Google Scholar
Pearce, JMS. Historical note on carotid disease and ligation. Eur. Neurol. 2014;72:2629.Google Scholar
Cooper, A. Account of the first successful operation performed on the common carotid artery for aneurysm in the year 1808, with post-mortem examination in 1821. Guy’s Hosp. Rep. 1836;1:5359.Google Scholar
Chiari, H. Uber das Verhalten des Tielungswinkels der Carotis communis bei der Endarteritis chronica deformans. Verhandl. deutschpath. Gesellsch. 1905;9:326330. Chapter 15 includes more information about Hans Chiari and his work.Google Scholar
The work of Moniz and the later evolution of cerebral angiography is discussed in detail in Chapter 31.Google Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1953;39:368376.Google Scholar
Chao, WH, Kwan, ST, Lyman, RS, et al. Thrombosis of the left internal carotid artery. Arch. Surg. 1938:37:100111.Google Scholar
Conley, J, Pack, G. Surgical procedure for lessening the hazard of carotid bulb excision. Surgery 1952;31:845858.Google Scholar
Fisher, CM. Occlusion of the carotid arteries: Further experiences. AMA Arch. Neurol. Psychiatry 1954;72;187204.Google ScholarGoogle Scholar
Carrea, R, Molins, M, Murphy, G. Surgical treatment of spontaneous thrombosis of the internal carotid artery in the neck: Carotid carotideal anastomosis. Acta Neurol. Latinoamer. 1955;1:7178.Google Scholar
Eastcott, H, Pickering, G, Rob, C. Reconstruction of internal carotid artery in a patient with intermittent attacks of hemiplegia. Lancet 1954;267(2):994996.Google ScholarGoogle Scholar
Dos Santos, JC. From embolectomy to endarterectomy or the fall of a myth. J. Cardiovasc. Surg. 1976;17:113128.Google Scholar
Strully, KJ, Hurwitt, ES, Blankenberg, HW. Thromboendarterectomy for thrombosis of the internal carotid artery in the neck. J. Neurosurg. 1953;10:474482.Google Scholar
DeBakey, M. Successful carotid endarterectomy for cerebrovascular insufficiency: Nineteen-year follow-up. JAMA 1975;233:10831085.Google Scholar
Cooley, D, Al-Naaman, Y, Carton, C. Surgical treatment of arteriosclerotic occlusion of common carotid artery. J. Neurosurg. 1956;13:500506.Google Scholar
Bahnson, H, Spencer, F, Quattlebaum, JJ. Surgical treatment of occlusive disease of the carotid artery. Ann. Surg. 1959;149:711720.Google Scholar
Fields, WS, Maslenikov, V, Meyer, JS, et al. Joint Study of Extracranial Artery Occlusion: V. Progress report of prognosis following surgery or non- surgery treatment for transient ischemic attacks and cervical carotid artery lesions. JAMA 1970;211:19932003.Google Scholar
National Center for Health Statistics. Detailed Diagnosis and Procedures, National Hospital Discharge Survey. Vital and Health Statistics. Series 13. Washington, DC: Government Printing Office, 1992–1997.Google Scholar
Barnett, HJM, Plum, F, Walton, JN. An expression of concern. Stroke 1984;15(6):942943.Google Scholar
Spence, JD, Hachinski, V. In memoriam. Henry J. M. Barnett, 1922–2016. Stroke 2017;48(1):24.Google Scholar
North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991;325:445453.Google ScholarGoogle Scholar
European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351(9113):13711387.Google Scholar
Charles Picton Warlow. Prabook. Available at https://prabook.com/web/charles_picton.warlow/315427.Google Scholar
DeRango, P, Brown, MM, Didier, L, et al. Management of carotid stenosis in women: Consensus document. Neurology 2013;80(24):22582268.Google Scholar
Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995;273:14211428.Google Scholar
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363(9420):14911502.Google Scholar
Benavente, O, Moher, D, Pham, B. Carotid endarterectomy for asymptomatic carotid stenosis: A meta-analysis. BMJ 1998;317:14771480.Google Scholar
Caplan, LR, Brott, TG. Of horse races, trials, meta-analyses, and carotid artery stenosis (Editorial). Arch. Neurol. 2011;68:157159.Google Scholar
Brott, TG, Hobson, RW II, Howard, G, et al. CREST Investigators. Stenting vs endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363:1123.Google Scholar
Bangalore, S, Kumar, S, Wetterslev, J, et al. Carotid artery stenting vs carotid endarterectomy: Meta-analysis and diversity-adjusted trial sequential analysis of randomized trials. Arch. Neurol. 2011;68(2):172184.Google Scholar

Notes and References

Vitek, JJ, Raymon, BC, Oh, SJ. Innominate artery angioplasty. AJNR 1984;5:113114.Google Scholar
Roubin, GS, Yadav, S, Iyer, SS, Vitek, J. Carotid stent-supported angioplasty: A neurovascular intervention to prevent stroke. Am. J. Cardiol. 1996 Aug 14;78(3A):812.Google Scholar
Brooks, WH, McClure, RR, Jones, MR, et al. Carotid angioplasty and stenting versus carotid endarterectomy: Randomized trial in a community hospital. J. Am. Coll. Cardiol. 2001;38:15891595.Google Scholar
Yadav, JS, Wholey, MH, Kuntz, RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N. Engl. J. Med. 2004;351:14931501.Google Scholar
Roubin, GS, New, G, Iyer, SS, Vitek, JJ, et al. Immediate and late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis: A 5-year prospective analysis. Circulation 2001;103(4):532537.Google Scholar
Ederle, J, Bonati, LH, Dobson, J, et al. CAVATAS Investigators. Endovascular treatment with angioplasty or stenting versus endarterectomy in patients with carotid artery stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): Long-term follow-up of a randomised trial. Lancet Neurol. 2009;8(10):898907.Google Scholar
Brott, TG, Hobson, RW II, Howard, G, Roubin, GS, et al. CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363(1):1123.Google Scholar
Caplan, LR, Brott, TG. Of horse races, trials, meta-analyses, and carotid artery stenosis (Editorial). Arch. Neurol. 2011;68:157159.Google Scholar
Sirignano, P, Stabile, E, Mansour, W, et al. 1-month results from a prospective experience on CAS using CGuard stent system: The IRONGUARD 2 study. JACC Cardiovasc. Interv. 2020;13(18):21702177.Google Scholar
Lal, BK, Meschia, JF, Brott, TG. Clinical need, design, and goals for the Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis trial. Semin. Vasc. Surg. 2017;30(1):27. Epub April 27, 2017.Google Scholar
Interventional treatment of aneurysms is discussed in Chapter 57, interventional treatment of AVMs in Chapter 59, and clot extraction in Chapter 56.Google Scholar
Higashida, RT, Myers, PM, IIIConnors, JJ, et al. Intracranial angioplasty and stenting for cerebral atherosclerosis: A position statement of the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, and the American Society of Neuroradiology. AJNR Am. J. Neuroradiol. 2005;26:23232327.Google Scholar
Connors, JJ III, Wojak, JC. Percutaneous transluminal angioplasty for intracranial atherosclerotic lesions: Evolution of technique and short-term results. J. Neurosurgery 1999;91:415423.Google Scholar
Feldman, RL, Trigg, L, Gaudier, J, Galat, J. Use of coroanry Palmaz-Schatz stent in the percutaneous treatment of an intracranial carotid artery stenosis. Cathet. Cardiovasc. Diagn. 1996;38:316319.Google Scholar
Leung, TW, Wabnitz, AM, Miao, Z, Chimowitz, M. Agioplasty and stenting. In Kim, J, Caplan, LR, Wong, KS (eds.), Intracranial Atherosclerosis: Pathophysiology, Diagnosis and Treatment. Front. Neurol. Neurosci. Basel: Karger, 2016, vol. 40, pp. 152163.Google Scholar
Chimowitz, MI, Lynn, MJ, Derdeyn, CP, et al. for the SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 2011;365(11):9931003.Google Scholar
Chimowitz, MI, Kokkinos, J, Strong, J, et al. The Warfarin-Aspirin Symptomatic Intracranial Disease Study. Neurology 1995;45:14881493.Google ScholarGoogle Scholar
Derdeyn, CP, Chimowitz, MI, Lynn, MJ, et al. for the for the SAMMPRIS Trial Investigators. Aggressive medical treatment with or without stenting in high risk patients with intracranial arterial stenosis (SAMMPRIS): The final trial results. Lancet 2014;383:333341.Google Scholar
Zaidat, OO, Fitzsimmons, BF, Woodward, BK, for the VISSIT Trial Investigators. Effect of a balloon expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: The VISSIT randomized clinical trial. JAMA 2015;313:12401248.Google Scholar
Alexander, M.J., Zauner, A, Chaloupka, JC, et al. WEAVE Trial: Final results in 152 on-label patients. Stroke 2019;50(4):889894.Google Scholar

Notes and References

Sussman, BJ, Fitch, TS. Thrombolysis with fibrinolysin in cerebral arterial occlusion. J. Am. Med. Assoc. 1958;167:17051709.Google Scholar
Zeumer, H, Hacke, W, Ringelstein, EB. Local intraarterial thrombolysis in vertebrobasilar thromboembolic disease. AJNR Am. J. Neuroradiol. 1983;4:401404.Google Scholar
Zeumer, H, Hündgen, R, Ferbert, A, Ringelstein, EB. Local intraarterial fibrinolytic therapy in inaccessible internal carotid occlusion. Neuroradiology 1984;26:315317.Google Scholar
Mori, E, Tabuchi, M, Yoshida, T, Yamadori, A. Intracarotid urokinase with thromboembolic occlusion of the middle cerebral artery. Stroke 1988;19:802812.Google Scholar
Hacke, W, Zeumer, H, Ferbert, A, Brückmann, H, del Zoppo, GJ. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1988;19:12161222.Google Scholar
del Zoppo, GJd, Higashida, RT, Furlan, AJ. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 1998;29:411.Google Scholar
Furlan, A, Higashida, R, Wechsler, L, Gent, M, Rowley, H, Kase, C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:20032011.Google Scholar
Ogawa, A, Mori, E, Minematsu, K, et al. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. Stroke 2007;38:26332639.Google Scholar
Lewandowski, CA, Frankel, M, Tomsick, TA, et al. Combined intravenous and intra-arterial r-tPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) bridging trial. Stroke 1999;30:25982605.Google ScholarGoogle ScholarGoogle Scholar
Broderick, JP, Palesch, YY, Demchuk, AM, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 2013;368:893903.Google ScholarGoogle ScholarGoogle Scholar
Nogueira, RG, Schwamm, LH, Hirsch, JA. Endovascular approaches to acute stroke, part 1: Drugs, devices, and data. AJNR Am. J. Neuroradiol. 2009;30:649661.Google Scholar
Smith, WS, Sung, G, Saver, J, Budzik, R, Duckwiler, G, Liebeskind, DS, et al. Mechanical thrombectomy for acute ischemic stroke: Final results of the Multi MERCI trial. Stroke 2008;39:12051212.Google Scholar
The Penumbra Pivotal Stroke Trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009;40:2761–2768.Google Scholar
Castaño, C, Dorado, L, Guerrero, C, et al. Mechanical thrombectomy with the Solitaire AB device in large artery occlusions of the anterior circulation: A pilot study. Stroke 2010;41:18361840.Google Scholar
Roth, C, Papanagiotou, P, Behnke, S, et al. Stent-assisted mechanical recanalization for treatment of acute intracerebral artery occlusions. Stroke 2010;41:25592567.Google Scholar
Saver, JL, Jahan, R, Levy, EI, et al. Solitaire flow restoration device versus the Merci retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet 2012;380:12411249.Google ScholarGoogle Scholar
Examples include Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015;372:10191030.Google ScholarGoogle ScholarGoogle Scholar
Berkhemer, OA, Fransen, PS, Beumer, D, et al. for the MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015;372:1120.Google Scholar
Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015;372:10191030.Google Scholar
Saver, JL, Goyal, M, Bonafe, A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. T-PA alone in stroke. N. Engl. J. Med. 2015;372:22852295.Google Scholar
Jovin, TG, Chamorro, A, Cobo, E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015;372:22962306.Google Scholar
Campbell, BC, Mitchell, PJ, Kleinig, TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015;372:10091018.Google Scholar
Bracard, S, Ducrocq, X, Mas, JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): A randomised controlled trial. Lancet Neurol. 2016;15:11381147.Google Scholar
Muir, KW, Ford, GA, Messow, CM, et al. Endovascular therapy for acute ischaemic stroke: The Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial. J. Neurol. Neurosurg. Psychiatry 2017;88:3844.Google Scholar
Goyal, M, Menon, BK, van Zwam, WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:17231731.Google Scholar
Martins, SO, Mont’Alverne, F, Rebello, LC, et al. Thrombectomy for stroke in the public health care system of Brazil. N. Engl. J. Med. 2020;382:23162326.Google Scholar
Nogueira, RG, Jadhav, AP, Haussen, DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2017;378:1121.Google Scholar
Albers, GW, Marks, MP, Kemp, S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018;378:708718.Google Scholar
Jovin, T, Nogueira, RG, Lansberg, M, et al. Thrombectomy for anterior circulation stroke beyond 6 hours from time last known well: The AURORA (analysis of pooled data from randomized studies of thrombectomy more than 6 hours after last known well) collaboration. Lancet 2021, in press.Google Scholar
Lapergue, B, Blanc, R, Gory, B, et al. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: The ASTER randomized clinical trial. JAMA 2017;318:443452.Google ScholarGoogle Scholar
Schönenberger, S, Hendén, PL, Simonsen, CZ, et al. Association of general anesthesia vs procedural sedation with functional outcome among patients with acute ischemic stroke undergoing thrombectomy: A systematic review and meta-analysis. JAMA 2019;322:12831293.Google Scholar
Mendez, B, Requena, M, Aires, A, et al. Direct transfer to angio-suite to reduce workflow times and increase favorable clinical outcome. Stroke 2018;49:27232727.Google Scholar
Liu, X, Dai, Q, Ye, R, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): An open-label, randomised controlled trial. Lancet Neurol. 2020;19:115122.Google ScholarGoogle Scholar
Yang, P, Zhang, Y, Zhang, L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N. Engl. J. Med. 2020;382:19811993.Google Scholar

Notes and References

Moulin, D. Ebers Papyrus. Arch. Chir. Neerl. 1961;12:4963.Google Scholar
Milinis, K, Thapar, A, O’Neill, K, Davies, AH. History of aneurysmal spontaneous subarachnoid hemorrhage. Stroke 2017;48:e280e283.Google Scholar
Magnus, V. Aneurysm of the internal carotid artery. JAMA 1927;88:17211713.Google Scholar
Morgagni, J. Sedibus et causis morborum per anatomen indagatis. Venetis, ex typog. Remodiniana. New York: Hafner, 1960, p. 1. The career of Morgagnis is the topic of Chapter 7, and Morgagni’s description of an intracranial aneurysm is described also in Chapter 17.Google Scholar
Pool, JL. The development of modern intracranial aneurysm surgery. Neurosurgery 1977;1:233237.Google Scholar
Hunter, J, Ottley, D, Bell, T, Home, E, Babington, GG, Owen, R. The Works of John Hunter, FRS with Notes. London: Longman, Rees, Orme, Brown, Green, and Longman, 1837.Google Scholar
Cooper, B. Lectures on the Principles and Practices of Surgery, 2nd ed. Philadelphia: Blanchard & Lee, 1852.Google ScholarGoogle ScholarGoogle Scholar
Powell, MP. Sir Victor Horsley at the birth of neurosurgery. Brain 2016;139(2):631634.Google ScholarGoogle Scholar
Cohen-Gadol, AA, Spencer, DD, Harvey, W. Cushing and cerebrovascular surgery: Part I, aneurysms. J. Neurosurg. 2004;101:547552. doi:10.317/jns.2004.101.3.0547. Sir Charles Symonds’s account of the inadvertent discovery of an intracranial aneurysm by Cushing is recounted in detail in Chapter 18.Google Scholar
Mount, LA. Results of treatment of intracranial aneurysms using the Selverstone clamp. J. Neurosurg. 1959;16:611618.Google Scholar
Dott, N. Intracranial aneurysms: Cerebral arterioradiography: Surgical treatment. Edinb. Med. J. 1933;40(12):T219T240.Google ScholarGoogle Scholar
Cushing, HI. The control of bleeding in operations for brain tumors: With the description of silver “clips” for the occlusion of vessels inaccessible to the ligature. Ann. Surg. 1911;54:119.Google Scholar
Dandy, W. Intracranial aneurysms of the internal carotid artery cured by operation. Ann. Surg. 1938;107:654659.Google Scholar
Fox, WL. Dandy of Johns Hopkins. Baltimore, MD: Williams and Wilkins, 1984.Google ScholarGoogle ScholarGoogle Scholar
Dandy, WE. Intracranial Arterial Aneurysms. Ithaca, NY: Comstock, 1944.Google Scholar
Logue, V. Surgery in spontaneous subarachnoid haemorrhage: Operative treatment of aneurysms on the anterior cerebral and anterior communicating artery. Brit. Med. J. 1956 4965:473479.Google Scholar
Moniz’s introduction of brain angiography and the evolution of angiography is the topic of Chapter 31.Google Scholar
Fox, JL (ed.). Intracranial Aneurysms. New York: Springer-Verlag, 1983, vols. 1–7.Google ScholarGoogle Scholar
Mayfield, FH, Kees, G Jr. A brief history of the development of the Mayfield clip. Technical note. J. Neurosurg. 1971;35:97100.Google Scholar
Del Maestro, RF: Origin of the Drake fenestrated aneurysm clip. J. Neurosurg. 2000;92:10561064.Google Scholar
Kassell, NF. George Charles Drake MD 1920–1998, an Obituary. J. Neurosurg. 1999;90:797801.Google Scholar
Link, TE, Bisson, E, Horgan, MA, Tanner, BI. Raymond, MP. Donaghy: A pioneer in microneurosurgery. J. Neurosurg. 2010;112(6):11761181.Google Scholar
Stienen, MN, Serra, C, Stieglitz, LH, Krayenbühl, N, Bozinov, O, Regli, L. UniversitätsSpital Zürich: 80 years of neurosurgical care in Switzerland. Acta Neurochir. (Wien) 2018;160(1):322.Google ScholarGoogle ScholarGoogle Scholar
Lussenhop, AJ, Velaquez, AC. Artificial embolization of cerebral arteries: Report of use in a case of arteriovenous malformation. JAMA 1960;172:11531155.Google ScholarGoogle Scholar
Rothenberg, SF, Penka, EJ, Conway, LW. Angiotactic surgery: Preliminary studies. J. Neurol. Neurosurg. Psychiatry 1962;19:877883.Google Scholar
Frei, EH, Driller, J, Neufeld, HN, Barr, I, Bieiden, L, Askeray, HN. The POD and its application. Med. Res. Eng. 1966;5:1118.Google Scholar
Yodh, SB, Pierce, NT, Weggel, RJ, Montgomery, DB. A new magnet system for intravascular navigation. Med. Biol. Eng. 1968;6:143147.Google Scholar
Teitelbaum, GP, Larsen, DW, Zelman, V, Lysachev, AG, Likhterman, LB. A tribute to Dr. Fedor A. Serbinenko, founder of endovascular neurosurgery. Neurosurgery 2000;46(2):462469.Google Scholar
Serbinenko, FA. Balloon catheterization and occlusion of major cerebral vessels. J. Neurosurg. 1974;41:125145.Google Scholar
Higashida, RT, Halbach, VV, Barnwell, SL, Dowd, C, Dormandy, B, Bell, J, Hieshima, GB. Treatment of intracranial aneurysms with preservation of the parent vessel: Result of percutaneous balloon embolization in 84 patients. AJNR Am. J. Neuroradiol. 1990;11:633640.Google Scholar
Guglielmi, Guido. Whonamedit? Available at www.whonamedit.com/doctor.cfm/3137.html.Google Scholar
Guglielmi, G. Endovascular treatment of intracranial aneurysms. Neuroimag. Clin. N. Am. 1992;2:269278.Google ScholarGoogle Scholar
Fiorella, D, Albuquerque, FC, Deshmukh, VR, McDougall, CG. Usefulness of the Neuroform stent for the treatment of cerebral aneurysms: Results at initial (3–6-mo) follow-up. Neurosurgery 2005;56:11911201, discussion 1201–1202.Google ScholarGoogle Scholar
D’Urso, PI, Lanzino, G, Cloft, HJ, Kallmes, DF. Flow diversion for intracranial aneurysms: A review. Stroke 2011;42:23632368.Google ScholarGoogle Scholar

References

Xi, G, Keep, RF, Hoff, JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:5363.Google Scholar
Xi, G, Keep, RF, Hoff, JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J. Neurosurg. 1998;89:991996.Google ScholarGoogle ScholarGoogle Scholar
Poungvarin, N, Bhoopat, W, Viriyavejakul, A, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N. Engl. J. Med. 1987;316:12291233.Google Scholar
Aronowski, J, Zhao, X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke 2011;42:17811786.Google Scholar
Hemphill, JC, Greenberg, SM, Anderson, CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:20322060.Google Scholar
Shoamanesh, A, Lindsay, MP, Castellucci, LA, et al. Canadian stroke best practice recommendations: Management of spontaneous intracerebral hemorrhage, 7th edition update 2020. Int. J. Stroke 2021;16:321341.Google Scholar
Wagner, KR, Sharp, FR, Ardizzone, TD, Lu, A, Clark, JF. Heme and iron metabolism: Role in cerebral haemorrhage. J. Cereb. Blood Flow Metab. 2003;23:629652.Google Scholar
Selim, M, Foster, LD, Moy, CS, et al. Deferoxamine mesylate in patients with intracerebral hemorrhage (i-DEF): A multicentre, randomized, placebo- controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428438.Google Scholar
James, CDT. Sir William Macewen. Proc. Roy. Soc. Med. 1974;67:237242.Google ScholarGoogle Scholar
McKissock, W, Richardson, A, Taylor, J. Primary intracerebral haemorrhage: A controlled trial of surgical and conservative treatment in 180 unselected cases. Lancet 1961;2:221226.Google Scholar
McKissock, W. Rostral leucotomy. Lancet 1951;258:9194. Wylie McKissock (obituary). The Times, May 11, 1994.Google Scholar
de Oliveira Manoel, AL. Surgery for spontaneous intracerebral hemorrhage. Critical Care 2020;24:45. https://doi.org./10.1186/s13054-020-2749-2.Google Scholar
Auer, LM, Deinsberger, W, Niederkorn, K, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. J. Neurosurg. 1989;70:530535.Google Scholar
Juvela, S, Heiskanen, O, Poranen, A, et al. The treatment of spontaneous intracerebral hemorrhage: A prospective randomized trial of surgical and conservative treatment. J. Neurosurg. 1989;70:755758.Google Scholar
Batjer, HH, Reisch, JS, Allen, BC, Plaizier, LJ, Su, CJ. Failure of surgery to improve outcome in hypertensive putaminal hemorrhage: A prospective randomized trial. Arch. Neurol. 1990;47:11031106.Google Scholar
Morgenstern, LB, Frankowski, RF, Shedden, P, Pasteur, W, Grotta, JC. Surgical treatment for intracerebral hemorrhage (STICH): A single-center, randomized clinical trial. Neurology 1998;51:13591363.Google Scholar
Zuccarello, M, Brott, T, Derex, L, et al. Early surgical treatment for supratentorial intracerebral hemorrhage: A randomized feasibility study. Stroke 1999;30:18331839.Google Scholar
Morgenstern, LB, Demchuk, AM, Kim, DH, Frankowski, RF, Grotta, JC. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology 2001;56:12941299.Google Scholar
Teernstra, OPM, Evers, SMAA, Lodder, J, et al. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: A multicenter randomized controlled trial (SICHPA). Stroke 2003;34:968974.Google Scholar
Hattori, N, Katayama, Y, Maya, Y, Gatherer, A. Impact of stereotactic hematoma evacuation on activities of daily living during the chronic period following spontaneous putaminal hemorrhage: A randomized study. J. Neurosurg. 2004;101:417420.Google Scholar
Mendelow, AD, Gregson, BA, Fernandes, HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005;365:387397.Google Scholar
Pantazis, G, Tsitsopoulos, P, Mihas, C et al. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: A prospective randomized study. Surg. Neurol. 2006;66:492501.Google Scholar
Kim, YZ, Kim, KH. Even in patients with a small hemorrhagic volume, stereotactic-guided evacuation of spontaneous intracerebral hemorrhage improves functional outcome. J. Korean Neurosurg. Soc. 2009;46:109115.Google Scholar
Wang, W-Z, Jiang, B, Liu, H-M, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: Results from a randomized clinical trial in China. Int. J. Stroke 2009;4:1116.Google Scholar
Mendelow, AD, Gregson, BA, Rowan, EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013;382:397408.Google Scholar
Vespa, P, Hanley, D, Betz, J, et al. ICES (intraoperative stereotactic computed tomography-guided endoscopic surgery) for brain hemorrhage: A multicenter randomized controlled trial. Stroke 2016;47:27492755.Google Scholar
Hanley, DF, Thompson, RE, Rosenblum, M, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019;393:10211032.Google Scholar
Hanley, DF, Thompson, RE, Muschelli, J, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:12281237.Google Scholar
Kase, CS, Hanley, DF. Intracerebral hemorrhage: Advances in emergency care. Neurol. Clin. 2021;39:405418.Google Scholar
Herbstein, DJ, Schaumburg, HH. Hypertensive intracerebral hemorrhage: An investigation of the initial hemorrhage and rebleeding using chromium Cr 51-labelled erythrocytes. Arch. Neurol. 1974;30:412414.Google Scholar
Mizukami, M, Araki, G, Mihara, H, Tomita, T, Fuginaga, R. Arteriographically visualized extravasation in hypertensive intracerebral hemorrhage; report of seven cases. Stroke 1972;3:527537.Google Scholar
Broderick, JP, Brott, TG, Tomsick, T, Barsan, W, Spilker, J. Ultra-early evaluation of intracerebral hemorrhage. J. Neurosurg. 1990;72:195199.Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage: Incidence and time course. Stroke 1996;27:17831787.Google ScholarGoogle Scholar
Anderson, CS, Huang, Y, Wang, JG, et al., INTERACT Investigators. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): A randomised pilot trial. Lancet Neurol. 2008;7(5):391399.Google ScholarGoogle Scholar
Qureshi, AI, Palesch, YY, Barsan, WG, et al., ATACH-2 Trial Investigators and the Neurological Emergency Treatment Trials Network. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N. Engl. J. Med. 2016;375:10331043.Google ScholarGoogle Scholar
Hoffman, M, Monroe, DM. A cell-based model of hemostasis. Thromb. Haemost. 2001;85:958965.Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 2005;352:777785.Google ScholarGoogle Scholar
Demchuk, AM, Dowlatshahi, D, Rodriquez-Luna, D, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol. 2012;11:307314.Google Scholar
Gladstone, DJ, Aviv, RI, Demchuk, AM, et al. Effect of recombinant activated coagulation factor VII on hemorrhage expansion among patients with spot sign-positive acute intracerebral hemorrhage: The SPOTLIGHT and STOP-IT randomized clinical trials. JAMA Neurol. 2019;76:14931501.Google Scholar
Sprigg, N, Flaherty, K, Appleton, JP, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): An international randomized, placebo-controlled, phase 3 superiority trial. Lancet 2018;391:21072115.Google Scholar
Meretoja, A, Yassi, N, Wu, TY, et al. Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): A multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2020;19:980987.Google Scholar
Steiner, T, Weitz, JI, Veltkamp, R. Anticoagulant-associated intracranial hemorrhage in the era of reversal agents. Stroke 2017;48:14321437.Google Scholar
Frumkin, K. Rapid reversal of warfarin-associated hemorrhage in the emergency department by prothrombin complex concentrates. Ann. Emerg. Med. 2013;62:616626.Google Scholar
Aiyagari, V, Testai, FD. Correction of coagulopathy in warfarin associated cerebral hemorrhage. Curr. Opin. Crit. Care 2009;15:8792.Google Scholar
Ferreira, J, DeLosSantos, M. The clinical use of prothrombin complex concentrate. J. Emerg. Med. 2013;44:12011210.Google Scholar
Steiner, T, Poli, S, Griebe, M, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): A randomised trial. Lancet Neurol. 2016;15:566573.Google Scholar
Purrucker, JC, Haas, K, Rizos, T, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73:169177.Google ScholarGoogle Scholar
Baharoglu, MI, Cordonnier, C, Al-Shahi Salman, R, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): A randomised, open-label, phase 3 trial. Lancet 2016;387:26052613.Google Scholar
Marinkovic, I, Strbian, D, Pedrono, E, et al. Decompressive craniectomy for intracerebral hemorrhage. Neurosurgery 2009;65:780786.Google Scholar
Ferro, JM, Crassard, I, Coutinho, JM, et al. Decompressive surgery in cerebrovenous thrombosis: A multicenter registry and a systematic review of individual patient data. Stroke 2011;42:28252831.Google Scholar
Yao, Z, Ma, L, You, C, He, M. Decompressive craniectomy for spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. World Neurosurg. 2018:110:121128.Google Scholar

Notes and References

Gaupp, J. Casuistische Beitrage zur pathologischen anatomie des ruckenmarks und seiner haute. II. Hemorrhoiden der pia-mater spinalis in gebiete des lendenmarks. Beitrage zur pathologishen Anatomie und zur allgemeinen Pathologie 1888;2:510524.Google Scholar
Worster-Drought, C, Carnegie Dickson, WE. Venous angioma of the cerebrum: Report of a case with necropsy. J. Neurol. Psychopathol. 1927;8(29):1922.Google Scholar
Campbell, H, Ballance, C. A case of venous angioma of the cerebral cortex. Lancet 1922;199(5132):1011.Google Scholar
Fodstad, H, Ljunggren, B, Kristiansen, K. Vilhelm Magnus: Pioneer neurosurgeon. J. Neurosurg. 1990;73(3):317330.Google Scholar
Harvey Cushing’s initial experience with brain aneurysms is described in Chapter 18. Two detailed biographies describe the main life events and accomplishments of Harvey Cushing: Fulton, J. Harvey Cushing: A Biography – The Story of a Great Medical Pioneer. Springfield, IL: Charles C. Thomas, 1946;Google ScholarGoogle Scholar
Cushing, H, Bailey, P. Tumors Arising from the Blood-Vessels of the Brain: Angiomatous Malformations and Hemangioblastomas. Springfield, IL: Charles C. Thomas, 1928.Google Scholar
The career and accomplishments of Walter Dandy are discussed in Chapter 56 and in Fox, WL. Dandy of Johns Hopkins. Baltimore, MD: Williams and Wilkins, 1984.Google Scholar
Dandy, WE. Arteriovenous aneurysm of the brain. Arch. Surg. 1928;117(2):190243.Google Scholar
Ljunggren, B. Herbert Olivecrona: Founder of Swedish neurosurgery. J. Neurosurg. 1993;78(1):142149.Google Scholar
Olivecrona, H, Riives, J. Arteriovenous aneurysms of the brain, their diagnosis and treatment. Arch. Neurol. Psychiatry 1948;59(5):567602.Google Scholar
Norle, G. Arteriovenous aneurysms of the brain; report of ten cases of total removal of the lesion. J. Neurosurg. 1949;6(6):475494.Google Scholar
Murphy, JP. Cerebrovascular Disease. Chicago: Year Book Medical Publishers, 1954, pp. 73105.Google Scholar
Perret, G, Nishioka, H. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the cooperative study. J. Neurosurg. 1966;25(4):467490.Google Scholar
Fults, D, Kelly, DL Jr. Natural history of arteriovenous malformations of the brain: A clinical study. Neurosurgery 1984;15(5):658662.Google ScholarGoogle ScholarGoogle Scholar
Crawford, PM, West, CR, Chadwick, DW, Shaw, MD. Arteriovenous malformations of the brain: Natural history in unoperated patients. J. Neurol. Neurosurg. Psychiatry 1986;49(1):110.Google Scholar
Samson, D, Batjer, HH. Preoperative evaluation of the risk/benefit ratio for arteriovenous malformations of the brain. In Wilkins, RH, Rengachart, SS (eds.), Neurosurgery Update II. New York: McGraw-Hill, 1991, pp. 121133.Google Scholar
Kurze, Theodore, MD, interviewed by Peter J. Jannetta, MD. YouTube. Available at www.youtube.com/watch?v=AOUZG3VajBk.Google Scholar
The career of Gazi Yasargil is discussed in Chapter 56 on aneurysms. Stienen, MN, Serra, C, Stieglitz, LH, Krayenbühl, N, Bozinov, O, Regli, L. UniversitätsSpital Zürich: 80 years of neurosurgical care in Switzerland. Acta Neurochir. (Wien) 2018;160(1):322.Google ScholarGoogle ScholarGoogle Scholar
Yasargil, MG. Microsurgery Applied to Neurosurgery. Stuttgart: Georg Thieme, 1969, pp. 105119.Google Scholar
Yasargil, MG, Jain, KK, Antic, J, Laciga, R. Arteriovenous malformations of the splenium of the corpus callosum: Microsurgical treatment. Surg. Neurol. 1976;5(1):514.Google ScholarGoogle Scholar
Yasargil, MG. Microneurosurgery, vol. III B: AVM of the Brain, Clinical Consideration, General and Special Operative Techniques, Surgical Results, Nonoperated Cases, Cavernous and Venous Angiomas, Neuroanesthesia. New York: Georg Thieme Verlag Stuttgart, 1988.Google Scholar
Past honored guests: Heros, Robert C.. 2005. Congress of Neurological Surgeons. Available at www.cns.org/meetings/past-honored-guests-detail/roberto-c-heros.Google Scholar
Heros, RC. Arteriovenous malformations of the medial temporal lobe. Surgical approach and neuroradiological characterization. J. Neurosurg. 1982;56(1):4452.Google Scholar
Latchaw, RE, Hu, X, Ugurbil, K, Hall, WA, Madison, MT, Heros, RC. Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 1995;37(4):619625; discussion 625–626.Google Scholar
Luessenhop, AJ, Spence, WT. Artificial embolization of cerebral arteries. Report of use in a case of arteriovenous malformation. JAMA 1960;172:11531155. The use of embolic particles to treat intracranial vascular lesions is discussed in detail in Chapter 56 on treatment of aneurysms.Google Scholar
Luessenhop, AJ, Gennarelli, TA. Anatomical grading of supratentorial arteriovenous malformations for determining operability. Neurosurg. 1977;1(1):3035.Google Scholar
Spetzler, RF, Martin, NA. A proposed grading system for arteriovenous malformations. J. Neurosurg. 1986;65(4):476483.Google Scholar
Spetzler, Robert F.. Wikipedia. Available at https://en.wikipedia.org/wiki/Robert_F._Spetzler. Past honored guests: Robert F. Spetzler. 1994. Congress of Neurological Surgeons. Available at www.cns.org/meetings/past-honored-guests-detail/robert-f-spetzler.Google Scholar
Spetzler collection. Operative Neurosurgery 2019 Oct;17(4):339.Google Scholar
van Beijnum, J, van der Worp, HB, Buis, DR, et al. Treatment of brain arteriovenous malformations: A systematic review and meta-analysis. JAMA 2011;306:20112019.Google ScholarGoogle Scholar
Mohr, JP, Parides, MK, Stapf, C, Moquete, E, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet 2014;383(9917):614621.Google Scholar
Dandy, WE. Venous abnormalities and angiomas of the brain. Arch. Surg. 1928;17:715793.Google Scholar
Penfield, W, Ward, A. Calcifying epileptogenic lesions; hemangioma calcificans; report of a case. Arch. Neurol. Psychiatry 1948;60(1):2036.Google Scholar
Schneider, RC, Liss, L. Cavernous hemangiomas of the cerebral hemispheres. J. Neurosurg. 1958;15(4):392399.Google Scholar
Professorships: Daniele Rigamonti. Johns Hopkins University. Available at https://professorships.jhu.edu/chair/daniele-rigamonti-md-facs/.Google Scholar
Rigamonti, D, Hadley, MN, Drayer, BP, Johnson, PC, et al. Cerebral cavernous malformations: Incidence and familial occurrence. N. Engl. J. Med. 1988;319(6):343347.Google ScholarGoogle Scholar
Steiner, L, Karlsson, B, Yen, CP, Torner, JC, et al. Radiosurgery in cavernous malformations: Anatomy of a controversy. J. Neurosurg. 2010;113(1):1621; discussion 21–22.Google Scholar
Truwit, C. Venous angiomas of the brain: History, significance, and imaging findings. Am. J. Radiol. 1992;159:12991307.Google ScholarGoogle Scholar
Travers, B. A case of aneurism by anastomosis in the orbit, cured by the ligature of the common carotid artery. Med. Chir. Trans. 1811;2(1):420421.Google Scholar
Hamby, WB, Gardner, WJ. Treatment of pulsating exophthalmos with report of two cases. JAMA Surgery 1933;27(4):676685.Google Scholar
Dandy, WE. The treatment of carotid cavernous arteriovenous aneurysms. Ann. Surg. 1935;102(5):916926.Google Scholar
Parkinson, Dwight, MD, interviewed by Jock McBeath, MD. YouTube. Available at www.youtube.com/watch?v=VpzIIbeHRmU.Google Scholar
Parkinson, D. A surgical approach to the cavernous portion of the carotid artery. Anatomical studies and case report. J. Neurosurg. 1965;23(5):474483.Google Scholar
The career and contributions of Fiódor Andreevitch Serbinenko is discussed in Chapter 56 on aneurysms. Arutiunov, AI, Serbinenko, FA, Shlykov, AA. Surgical treatment of carotid-cavernous fistulas. Prog. Brain Res. 1968;30:441444.Google Scholar
Mullan, S. Treatment of carotid-cavernous fistulas by cavernous sinus occlusion. J. Neurosurg. 1979;50(2):131144.Google Scholar
Debrun, G, Lacour, P, Caron, JP, Hurth, M, et al. Detachable balloon and calibrated-leak balloon techniques in the treatment of cerebral vascular lesions. J. Neurosurg. 1978;49(5):635649.Google Scholar
Halbach, VV, Higashida, RT, Hieshima, GB, Hardin, CW, et al. Transvenous embolization of dural fistulas involving the cavernous sinus. AJNR Am. J. Neuroradiol. 1989;10(2):377383.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×