Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-14T06:58:24.316Z Has data issue: false hasContentIssue false

24 - Nonparametric Density Estimation

Published online by Cambridge University Press:  05 June 2012

A. W. van der Vaart
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

This chapter is an introduction to estimating densities if the underlying density of a sample of observations is considered completely unknown, up to existence of derivatives. We derive rates of convergence for the mean square error of kernel estimators and show that these cannot be improved. We also consider regularization by monotonicity.

Introduction

Statistical models are called parametric models if they are described by a Euclidean parameter (in a nice way). For instance, the binomial model is described by a single parameter p, and the normal model is given through two unknowns: the mean and the variance of the observations. In many situations there is insufficient motivation for using a particular parametric model, such as a normal model. An alternative at the other end of the scale is a non parametric model, which leaves the underlying distribution of the observations essentially free. In this chapter we discuss one example of a problem of nonparametric estimation: estimating the density of a sample of observations if nothing is known a priori. From the many methods for this problem, we present two: kernel estimation and monotone estimation. Notwithstanding its simplicity, this method can be fully asymptotically efficient.

Kernel Estimators

The most popular nonparametric estimator of a distribution based on a sample of observations is the empirical distribution, whose properties are discussed at length in Chapter 19. This is a discrete probability distribution and possesses no density. The most popular method of nonparametric density estimation, the kernel method, can be viewed as a recipe to “smooth out” the pointmasses of sizes in order to tum the empirical distribution into a continuous distribution.

Let be a random sample from a density f on the real line. If we would know that f belongs to the normal family of densities, then the natural estimate of f would be the normal density with mean and variance or the function

In this section we suppose that we have no prior knowledge of the form of f and want to “let the data speak as much as possible for themselves.“

Let K be a probability density with mean 0 and variance 1, for instance the standard normal density.

Type
Chapter
Information
Asymptotic Statistics , pp. 341 - 357
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×