Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T23:58:58.563Z Has data issue: false hasContentIssue false

Molecular cloning and characterization of an Rcd1-like protein in excretory-secretory products of Trichinella pseudospiralis

Published online by Cambridge University Press:  10 August 2006

I. NAGANO
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu, 501-1194 Japan
Z. WU
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu, 501-1194 Japan
Y. TAKAHASHI
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu, 501-1194 Japan

Abstract

A cDNA library was constructed from muscle larvae of Trichinella pseudospiralis. A cDNA clone, designated as Tp8 contained a cDNA transcript of 1326 bp length with a single open reading frame, which encoded 303 amino acid residues (34187 Da, estimated molecular mass). The predicted amino acid sequence of the clone had an identity of approximately 60% to the Rcd1 (Required cell differentiation 1) -like proteins among a wide range of organisms. Real-time quantitative polymerase chain reaction results showed that the transcription level of Tp8 gene reached the highest value in adult worms, and that the transcription level in muscle larvae before stichosome formation was higher than in muscle larvae after stichosome formation. The recombinant Tp8 protein migrated at 37 kDa and reacted to antibody against T. pseudospiralis excretory-secretory (E-S) products and sera from mice infected with T. pseudospiralis. An antibody against the Tp8 recombinant protein could stain proteins migrating at approximately 34 kDa (which is the expected size from the sequence) on Western blotting of E-S products from muscle larvae. An immunocytochemical study showed that the Tp8 protein was present within the stichocyte of muscle larvae and adults worms.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appleton, J. A., Bell, R. G. M., Homan, W. and Van Knapen, F. ( 1991). Consensus on Trichinella spiralis antigens and antibody. Parasitology Today 7, 190192.CrossRefGoogle Scholar
Arden, S. R., Smith, A. M., Booth, M. J., Tweedie, S., Gounaris, K. and Selkirk, M. E. ( 1997). Identification of serine/threonine protein kinases secreted by Trichinella spiralis infective larvae. Molecular and Biochemical Parasitology 90, 111119.CrossRefGoogle Scholar
Bruce, A. F. and Gounaris, K. ( 2006) Characterisation of a secreted N-acetyl-beta-hexosaminidase from Trichinella spiralis. Molecular and Biochemical Parasitology 145, 8793.Google Scholar
Colangeli, R., Heijbel, A., Williams, A. M., Manca, C., Chan, J., Lyashchenko, K. and Gennaro, M. L. ( 1998). Three-step purification of lipopolysaccharide-free, polyhistidine-tagged recombinant antigens of Mycobacterium tuberculosis. Journal of Chromatography. B, Biomedical sciences and applications 714, 223235.CrossRefGoogle Scholar
Despommier, D. D., Gold, A. M., Buck, S. W., Capo, V. and Silberstern, D. ( 1990). Trichinella spiralis: secreted antigen of the infective L1 larva localizes to the cytoplasm and nucleoplasm of infected host cells. Experimental Parasitology 71, 2738.CrossRefGoogle Scholar
Gregory, R. C., Lord, K. A., Panek, L. B., Gaines P., Dillon, S. B. and Wojchowski, D. M. ( 2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine 12, 845857.CrossRefGoogle Scholar
Haas, M., Siegert, M., Schurmann, A., Sodeik, B. and Wolfes, H. ( 2004). c-Myb protein interacts with Rcd-1, a component of the CCR4 transcription mediator complex. Biochemistry 43, 81528159.CrossRefGoogle Scholar
Hiroi, N., Ito, T., Yamamoto, H., Ochiya, T., Jinno, S. and Okayama, H. ( 2002). Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic acid-induced cell differentiation. EMBO Journal 21, 52355244.CrossRefGoogle Scholar
Jasmer, D. P. ( 1990). Trichinella spiralis: altered expression of muscle proteins in trichinosis. Experimental Parasitology 70, 452465.CrossRefGoogle Scholar
Kehayov, I., Tankov, C., Komandarev, S. and Kyurkchiev, S. ( 1991). Antigenic differences between Trichinella spiralis and T. pseudospiralis detected by monoclonal antibodies. Parasitology Research 77, 7276.Google Scholar
Ko, R. C. and Fan, L. ( 1996). Heat shock response of Trichinella spiralis and T. pseudospiralis. Parasitology 96, 8595.Google Scholar
Ko, R. C., Fan, L., Lee, D. L. and Compton, H. ( 1994). Changes in host muscles induced by excretory/secretory products of larval Trichinella spiralis and Trichinella pseudospiralis. Parasitology 108, 195205.CrossRefGoogle Scholar
Mak, C. H., Chung, Y. Y. and Ko, R. C. ( 2000). Single-stranded endonuclease activity in the excretory-secretory products of Trichinella spiralis and Trichinella pseudospiralis. Parasitology 120, 527533.CrossRefGoogle Scholar
Mak, C. H. and Ko, R. C. ( 1999). Characterization of endonuclease activity from excretory/secretory products of a parasitic nematode, Trichinella spiralis. European Journal of Biochemistry 260, 477481.CrossRefGoogle Scholar
Matsuo, A., Wu, Z., Nagano, I. and Takahashi, Y. ( 2000). Five types of nuclei present in the capsule of Trichinella spiralis. Parasitology 121, 203210.CrossRefGoogle Scholar
Moczon, T. and Wranicz, M. ( 1999). Trichinella spiralis: proteinases in the larvae. Parasitology Research 85, 4758.CrossRefGoogle Scholar
Nagano, I., Wu, Z., Boonmars, T. and Takahashi, Y. ( 2004). Molecular cloning and characterisation of two kinds of proteins in excretory-secretory products of Trichinella pseudospiralis. International Journal for Parasitology 34, 491500.CrossRefGoogle Scholar
Nagano, I., Wu, Z., Nakada, T., Boonmars, T. and Takahashi, Y. ( 2002). Molecular cloning and characterization of a novel protein of Trichinella pseudospiralis excretory-secretory products. Journal of Helminthology 76, 165170.CrossRefGoogle Scholar
Nagano, I., Wu, Z., Nakada, T., Matsuo, A. and Takahashi, Y. ( 2001). Molecular cloning and characterization of a serine proteinase inhibitor from Trichinella spiralis. Parasitology 123, 7783.CrossRefGoogle Scholar
Okazaki, N., Okazaki, K., Watanabe, Y., Kato-Hayashi, M., Yamamoto, M. and Okayama, H. ( 1998). Novel factor highly conserved among eukaryotes controls sexual development in fission yeast. Molecular and Cellular Biology 18, 887895.CrossRefGoogle Scholar
Romarís, F., Escalante, M., Lorenzo, S., Bonay, P., Gárate, T., Leiro, J. and Ubeira, F. M. ( 2002). Monoclonal antibodies raised in Btk(xid) mice reveal new antigenic relationships and molecular interactions among gp53 and other Trichinella glycoproteins. Molecular and Biochemical Parasitology 125, 173183.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. ( 1989). Screening expression libraries with antibodies and oligonucleotides. In Molecular Cloning, A Laboratory Manual, 2nd Edn, pp. 12.112.44. Cold Spring Harbor Laboratory Press, New York.
Takada, N. and Tada, T. ( 1988). Collection of newborn larvae of Trichinella spiralis in vitro. Japanese Journal of Parasitology 37, 251253. (in Japanese).Google Scholar
Vassilatis, D. K., Despommier, D., Misek, D. E., Polvere, R. I., Gold, A. M. and Van der Ploeg, L. H. T. ( 1992). Analysis of a 43-kDa glycoprotein from the intracellular parasitic nematode Trichinella spiralis. Journal of Biological Chemistry 267, 1845918465.Google Scholar
Vassilatis, D. K., Despommier, D. D., Polvere, R. I., Gold, A. M. and Van der Ploeg, L. H. T. ( 1996). Trichinella pseudospiralis secretes a protein related to the Trichinella spiralis 43-kDa glycoprotein. Molecular and Biochemical Parasitology 78, 2531.CrossRefGoogle Scholar
Wakelin, D., Goyal, P. K., Dehlawi, M. S. and Hermanek, J. ( 1994). Immune responses to Trichinella spiralis and T. pseudospiralis in mice. Immunology 81, 475479.Google Scholar
Wisnewski, N., McNeil, M., Grieve, R. B. and Wassom, D. L. ( 1993). Characterization of novel fucosyl- and tyvelosyl-containing glycoconjugates from Trichinella spiralis muscle stage larvae. Molecular and Biochemical Parasitology 61, 2535.CrossRefGoogle Scholar
Wu, W. K., Mak, C. H. and Ko, R. C. ( 2006). Cloning and characterization of the Cu/Zn superoxide dismutase of Trichinella pseudospiralis. Parasitology Research 98, 281287.CrossRefGoogle Scholar
Wu, Z., Matsuo, A., Nakada, T., Nagano, I. and Takahashi, Y. ( 2001). Different response of satellite cells in the kinetics of myogenic regulatory factors and ultrastructural pathology after Trichinella spiralis and T. pseudospiralis infection. Parasitology 123, 8594.CrossRefGoogle Scholar
Wu, Z., Nagano, I., Nakada, T. and Takahashi, Y. ( 2002). Expression of excretory and secretory protein genes of Trichinella at muscle stage differs before and after cyst formation. Parasitology International 51, 155161.CrossRefGoogle Scholar
Wu, Z., Nagano, I. and Takahashi, Y. ( 1998). Differences and similarities between Trichinella spiralis and T. pseudospiralis in morphology of stichocyte granules, peptide maps of excretory and secretory (E-S) products and messenger RNA of stichosomal glycoproteins. Parasitology 116, 6166.Google Scholar
Wu, Z., Nagano, I. and Takahashi, Y. ( 1999). A panel of antigens of muscle larvae of Trichinella spiralis and T. pseudospiralis as revealed by two-dimensional Western blot and immunoelectron microscopy. Parasitology 118, 615622.Google Scholar
Xu, D., Wu, Z., Nagano, I. and Takahashi, Y. ( 1997). A muscle larva of Trichinella pseudospiralis is intracellular, but does not form a typical cyst wall. Parasitology International 46, 15.CrossRefGoogle Scholar
Zhang, Y. W., Lee, D. L. and Smith, J. E. ( 1993). Biochemical characterization of Trichinella spiralis and T. pseudospiralis stichocyte antigens. Applied Parasitology 34, 291294.Google Scholar