Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T02:36:10.242Z Has data issue: false hasContentIssue false

Natural logic and baby LoTH

Published online by Cambridge University Press:  28 September 2023

Irene Canudas-Grabolosa
Affiliation:
Department of Psychology, Department of Linguistics, Harvard University, Cambridge, MA, USA irenecanudas@gmail.com
Ana Martín-Salguero
Affiliation:
Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain ana.martin@upf.edu Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
Luca L. Bonatti
Affiliation:
Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain ana.martin@upf.edu ICREA, Barcelona, Spain lucabonatti@mac.com

Abstract

Language-of-thought hypothesis (LoTH) is having a profound impact on cognition studies. However, much remains unknown about its basic primitives and generative operations. Infant studies are fundamental, but methodologically very challenging. By distilling potential primitives from work in natural-language semantics, an approach beyond the corset of standard formal logic may be undertaken. Still, the road ahead is challenging and long.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Roumi, F., Marti, S., Wang, L., Amalric, M., & Dehaene, S. (2021). Mental compression of spatial sequences in human working memory using numerical and geometrical primitives. Neuron, 109(16), 26272639, e4.CrossRefGoogle ScholarPubMed
Carruthers, P. (2002). The cognitive functions of language. Behavioral and Brain Sciences, 25(6), 657726.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Kovács, Á. M., & Téglás, E. (2020). Infants recruit logic to learn about the social world. Nature Communications, 11(1), 19.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Martín, A., Téglás, E., Vorobyova, L., Cetnarski, R., & Bonatti, L. L. (2018). Precursors of logical reasoning in preverbal human infants. Science (New York, N.Y.), 359(6381), 12631266.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Téglás, E., & Bonatti, L. L. (2012). The probable and the possible at 12 months: Intuitive reasoning about the uncertain future. Advances in Child Development and Behavior, 43, 125.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Varga, B., & Téglás, E. (2022). The pupillometry of the possible: An investigation of infants' representation of alternative possibilities. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 377(1866), 20210343.CrossRefGoogle ScholarPubMed
Chierchia, G. (2013). Logic in grammar: Polarity, free choice, and intervention. MIT Press.CrossRefGoogle Scholar
Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S., & Sablé-Meyer, M. (2022). Symbols and mental programs: A hypothesis about human singularity. Trends in Cognitive Science, 26(9), 751766.CrossRefGoogle ScholarPubMed
Feigenson, L., & Halberda, J. (2004). Infants chunk object arrays into sets of individuals. Cognition, 91(2), 173190.CrossRefGoogle ScholarPubMed
Feigenson, L., & Halberda, J. (2008). Conceptual knowledge increases infants' memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 99269930.CrossRefGoogle ScholarPubMed
Feiman, R., Mody, S., & Carey, S. (2022). The development of reasoning by exclusion in infancy. Cognitive Psychology, 135, 101473.CrossRefGoogle ScholarPubMed
Hochmann, J. R. (2022). Representations of abstract relations in infancy. Open Mind, 6, 291310.CrossRefGoogle ScholarPubMed
Hochmann, J. R., Mody, S., & Carey, S. (2016). Infants' representations of same and different in match- and non-match-to-sample. Cognitive Psychology, 86, 87111.CrossRefGoogle ScholarPubMed
Hochmann, J.-R., Tuerk, A. S., Sanborn, S., Zhu, R., Long, R., Dempster, M., & Carey, S. (2017). Children’s representation of abstract relations in relational/array match-to-sample tasks. Cognitive Psychology, 99, 1743.CrossRefGoogle ScholarPubMed
Leahy, B., Huemer, M., Steele, M., Alderete, S., & Carey, S. (2022). Minimal representations of possibility at age 3. Proceedings of the National Academy of Sciences of the United States of America, 119(52), e2207499119.CrossRefGoogle ScholarPubMed
Leahy, B. P., & Carey, S. E. (2020). The acquisition of modal concepts. Trends in Cognitive Sciences, 24(1), 6578.CrossRefGoogle ScholarPubMed
Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 4048.CrossRefGoogle ScholarPubMed
Planton, S., van Kerkoerle, T., Abbih, L., Maheu, M., Meyniel, F., Sigman, M., … Dehaene, S. (2021). A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans. PLoS Computational Biology, 17(1), e1008598.CrossRefGoogle ScholarPubMed
Sablé-Meyer, M., Ellis, K., Tenenbaum, J., & Dehaene, S. (2022). A language of thought for the mental representation of geometric shapes. Cognitive Psychology, 139, 101527.CrossRefGoogle ScholarPubMed
Sablé-Meyer, M., Fagot, J., Caparos, S., van Kerkoerle, T., Amalric, M., & Dehaene, S. (2021). Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity. Proceedings of the National Academy of Sciences of the United States of America, 118(16), e2023123118.CrossRefGoogle ScholarPubMed
Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind: Advances in the study of language and thought (pp. 277311). MIT Press.Google Scholar
Zosh, J. M., Halberda, J., & Feigenson, L. (2011). Memory for multiple visual ensembles in infancy. Journal of Experimental Psychology: General, 140(2), 141158.CrossRefGoogle ScholarPubMed