Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:15:29.331Z Has data issue: false hasContentIssue false

The human fear paradox: Affective origins of cooperative care

Published online by Cambridge University Press:  18 April 2022

Tobias Grossmann*
Affiliation:
Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA grossmann@virginia.edu

Abstract

Already as infants humans are more fearful than our closest living primate relatives, the chimpanzees. Yet heightened fearfulness is mostly considered maladaptive, as it is thought to increase the risk of developing anxiety and depression. How can this human fear paradox be explained? The fearful ape hypothesis presented herein stipulates that, in the context of cooperative caregiving and provisioning unique to human great ape group life, heightened fearfulness was adaptive. This is because from early in ontogeny fearfulness expressed and perceived enhanced care-based responding and provisioning from, while concurrently increasing cooperation with, mothers and others. This explanation is based on a synthesis of existing research with human infants and children, demonstrating a link between fearfulness, greater sensitivity to and accuracy in detecting fear in others, and enhanced levels of cooperative behaviors. These insights critically advance current evolutionary theories of human cooperation by adding an early-developing affective component to the human cooperative makeup. Moreover, the current proposal has important cultural, societal, and health implications, as it challenges the predominant view in Western, educated, industrialized, rich, and democratic (WEIRD) societies that commonly construe fearfulness as a maladaptive trait, potentially ignoring its evolutionary adaptive functions.

Type
Target Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2013). The biology of fear. Current Biology, 23(2), R79R93. doi: 10.1016/j.cub.2012.11.055CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15, 58795891.CrossRefGoogle ScholarPubMed
Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. N. (2015). Patterns of attachment: A psychological study of the strange situation. Psychology Press.CrossRefGoogle Scholar
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268277.CrossRefGoogle ScholarPubMed
Beier, J. S., Gross, J. T., Brett, B. E., Stern, J. A., Martin, D. R., & Cassidy, J. (2019). Helping, sharing, and comforting in young children: Links to individual differences in attachment. Child Development, 90(2), e273e289. doi: 10.1111/cdev.13100CrossRefGoogle ScholarPubMed
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14(8), 746754.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885908. doi: 10.1037/a0017376CrossRefGoogle ScholarPubMed
Belsky, J., Rha, J.-H., & Park, S.-Y. (2000). Exploring reciprocal parent and child effects in the case of child inhibition in US and Korean samples. International Journal of Behavioral Development, 24(3), 338347. doi: 10.1080/01650250050118321CrossRefGoogle Scholar
Belsky, J., & van Ijzendoorn, M. H. (2017). Genetic differential susceptibility to the effects of parenting. Current Opinion in Psychology, 15, 125130. https://doi.org/10.1016/j.copsyc.2017.02.021CrossRefGoogle Scholar
Bhanji, J. P., & Delgado, M. R. (2014). The social brain and reward: Social information processing in the human striatum. Wiley Interdisciplinary Reviews. Cognitive Science, 5(1), 6173. doi: 10.1002/wcs.1266CrossRefGoogle ScholarPubMed
Bogin, B., Bragg, J., & Kuzawa, C. (2014). Humans are not cooperative breeders but practice biocultural reproduction. Annals of Human Biology, 41(4), 368380. doi: 10.3109/03014460.2014.923938CrossRefGoogle Scholar
Brand, R. J., Escobar, K., & Patrick, A. M. (2020). Coincidence or cascade? The temporal relation between locomotor behaviors and the emergence of stranger anxiety. Infant Behavior & Development, 58, 101423. doi: 10.1016/j.infbeh.2020.101423CrossRefGoogle ScholarPubMed
Bretherton, I. (2013). Revisiting Mary Ainsworth's conceptualization and assessments of maternal sensitivity–insensitivity. Attachment and Human Development, 15(5–6), 460484. doi: 10.1080/14616734.2013.835128CrossRefGoogle ScholarPubMed
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815834. doi: 10.1016/j.neuron.2010.11.022CrossRefGoogle ScholarPubMed
Brooks, J., Kano, F., Sato, Y., Yeow, H., Morimura, N., Nagasawa, M., … Yamamoto, S. (2021). Divergent effects of oxytocin on eye contact in bonobos and chimpanzees. Psychoneuroendocrinology, 125, 105119. doi: 10.1016/j.psyneuen.2020.105119CrossRefGoogle ScholarPubMed
Burkart, J. M., Allon, O., Amici, F., Fichtel, C., Finkenwirth, C., Heschl, A., … van Schaik, C. P. (2014). The evolutionary origin of human hyper-cooperation. Nature Communications, 5, 4747. doi: 10.1038/ncomms5747CrossRefGoogle ScholarPubMed
Burkart, J. M., Hrdy, S. B., & Van Schaik, C. P. (2009). Cooperative breeding and human cognitive evolution. Evolutionary Anthropology: Issues, News, and Reviews, 18(5), 175186. https://doi.org/10.1002/evan.20222CrossRefGoogle Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1, 149219.CrossRefGoogle ScholarPubMed
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.CrossRefGoogle ScholarPubMed
Carter, C. S. (2014). Oxytocin pathway and the evolution of human behavior. Annual Reviews in Psychology, 65, 1739.CrossRefGoogle ScholarPubMed
Cassidy, J., Brett, B. E., Gross, J. T., Stern, J. A., Martin, D. R., Mohr, J. J., & Woodhouse, S. S. (2017). Circle of security-parenting: A randomized controlled trial in head start. Developmental Psychopathology, 29(2), 651673. doi: 10.1017/s0954579417000244CrossRefGoogle ScholarPubMed
Cassidy, J., Ehrlich, K. B., & Sherman, L. J. (2014). Child–parent attachment and response to threat: A move from the level of representation. In M. Mikulincer & P. R. Shaver (Eds.), Mechanisms of social connection: From brain to group (pp. 125143). American Psychological Association.CrossRefGoogle Scholar
Chen, X., Chen, H., Li, D., & Wang, L. (2009). Early childhood behavioral inhibition and social and school adjustment in Chinese children: A 5-year longitudinal study. Child Development, 80(6), 16921704. https://doi.org/10.1111/j.1467-8624.2009.01362.xCrossRefGoogle ScholarPubMed
Chiao, J. Y., & Blizinsky, K. D. (2010). Culture–gene coevolution of individualism–collectivism and the serotonin transporter gene. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 529537. doi: 10.1098/rspb.2009.1650CrossRefGoogle ScholarPubMed
Cowell, J. M., & Decety, J. (2015). The neuroscience of implicit moral evaluation and its relation to generosity in early childhood. Current Biology, 25, 9397.CrossRefGoogle ScholarPubMed
Davidson, R. J. (2003). Affective neuroscience and psychophysiology: Toward a synthesis. Psychophysiology, 40(5), 655665. doi: 10.1111/1469-8986.00067CrossRefGoogle ScholarPubMed
Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3(1), 1121. doi: 10.1016/s1364-6613(98)01265-0CrossRefGoogle ScholarPubMed
Eisenberg, N., Fabes, R. A., Miller, P. A., Fultz, J., Shell, R., Mathy, R. M., & Reno, R. R. (1989). Relation of sympathy and personal distress to prosocial behavior: A multimethod study. Journal of Personality and Social Psychology, 57, 5566.CrossRefGoogle ScholarPubMed
Feldman, R. (2015). The adaptive human parental brain: Implications for children's social development. Trends in Neurosciences, 38(6), 387399. doi: 10.1016/j.tins.2015.04.004CrossRefGoogle ScholarPubMed
Feldman, R. (2017). The neurobiology of human attachments. Trends in Cognitive Sciences, 21(2), 8099. doi: 10.1016/j.tics.2016.11.007CrossRefGoogle ScholarPubMed
Fox, N. A., Buzzell, G. A., Morales, S., Valadez, E. A., Wilson, M., & Henderson, H. A. (2021). Understanding the emergence of social anxiety in children with behavioral inhibition. Biological Psychiatry, 89(7), 681689. doi: 10.1016/j.biopsych.2020.10.004CrossRefGoogle ScholarPubMed
Gaensbauer, T. J., Emde, R. N., & Campos, J. J. (1976). “Stranger” distress: Confirmation of a developmental shift in a longitudinal sample. Perceptual and Motor Skills, 43(1), 99106. doi: 10.2466/pms.1976.43.1.99CrossRefGoogle Scholar
Garstein, M. A., & Rothbart, M. K. (2003). Studying infant temperament via the revised infant behavior questionnaire. Infant Behavior and Development, 26, 6486.CrossRefGoogle Scholar
Gartstein, M. A., Gonzalez, C., Carranza, J. A., Ahadi, S. A., Ye, R., Rothbart, M. K., & Yang, S. W. (2006). Studying cross-cultural differences in the development of infant temperament: People's Republic of China, the United States of America, and Spain. Child Psychiatry and Human Development, 37(2), 145161. doi: 10.1007/s10578-006-0025-6CrossRefGoogle ScholarPubMed
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33, 45845493. doi: 10.1523/JNEUROSCI.3446-12.2013CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., & Low, F. M. (2019). Evolutionary and developmental mismatches are consequences of adaptive developmental plasticity in humans and have implications for later disease risk. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 374(1770), 20180109. doi: 10.1098/rstb.2018.0109CrossRefGoogle ScholarPubMed
Gračanin, A., Bylsma, L. M., & Vingerhoets, A. (2018). Why only humans shed emotional tears: Evolutionary and cultural perspectives. Human Nature, 29(2), 104133. doi: 10.1007/s12110-018-9312-8CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539559. doi: 10.2307/1130197CrossRefGoogle ScholarPubMed
Grossmann, T. (2008). Shedding light on infant brain function: The use of near-infrared spectroscopy (NIRS) in the study of face perception. Acta Paediatrica, 97, 11561158.CrossRefGoogle Scholar
Grossmann, T. (2012). The early development of processing emotions in face and voice. In P., Belin, S., Campanella, & T., Ethofer (Eds.), Integrating face and voice in person perception (pp. 95116). Springer.Google Scholar
Grossmann, T. (2013). The role of medial prefrontal cortex in early social cognition. Frontiers in Human Neuroscience, 7. doi: 10.3389/fnhum.2013.00340CrossRefGoogle ScholarPubMed
Grossmann, T. (2017). The eyes as windows into other minds: An integrative perspective. Perspectives on Psychological Science, 12, 107121.CrossRefGoogle Scholar
Grossmann, T. (2018). How to build a helpful baby: A look at the roots of prosociality in infancy. Current Opinion in Psychology, 20, 2124. https://doi.org/10.1016/j.copsyc.2017.08.007CrossRefGoogle Scholar
Grossmann, T., & Jessen, S. (2017). When in infancy does the “fear bias” develop? Journal of Experimental Child Psychology, 153, 149154.CrossRefGoogle ScholarPubMed
Grossmann, T., Johnson, M. H., Vaish, A., Hughes, D. A., Quinque, D., Stoneking, M., & Friederici, A. D. (2011). Genetic and neural dissociation of individual responses to emotional expressions in human infants. Developmental Cognitive Neuroscience, 1(1), 5766. doi: 10.1016/j.dcn.2010.07.001CrossRefGoogle ScholarPubMed
Grossmann, T., Missana, M., & Krol, K. M. (2018). The neurodevelopmental precursors of altruistic behavior in infancy. PLoS Biology, 16, e2005281.CrossRefGoogle ScholarPubMed
Guastella, A. J., Mitchell, P. B., & Dadds, M. R. (2008). Oxytocin increases gaze to the eye region of human faces. Biological Psychiatry, 63, 35.CrossRefGoogle Scholar
Hammer, J. L., & Marsh, A. A. (2015). Why do fearful facial expressions elicit behavioral approach? Evidence from a combined approach-avoidance implicit association test. Emotion, 15(2), 223231. doi: 10.1037/emo0000054CrossRefGoogle ScholarPubMed
Hansen Wheat, C., van der Bijl, W., & Temrin, H. (2019). Dogs, but not wolves, lose their sensitivity toward novelty with age. Frontiers in Psychology, 10, 2001. doi: 10.3389/fpsyg.2019.02001CrossRefGoogle ScholarPubMed
Hare, B. (2017). Survival of the friendliest: Homo sapiens evolved via selection for prosociality. Annual Review of Psychology, 68, 155186. doi: 10.1146/annurev-psych-010416-044201CrossRefGoogle ScholarPubMed
Heinz, A., & Smolka, M. N. (2006). The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Reviews in the Neurosciences, 17(3), 359367. doi: 10.1515/revneuro.2006.17.3.359CrossRefGoogle ScholarPubMed
Henderson, H. A., Pine, D. S., & Fox, N. A. (2015). Behavioral inhibition and developmental risk: A dual-processing perspective. Neuropsychopharmacology, 40(1), 207224. doi: 10.1038/npp.2014.189CrossRefGoogle Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183. doi: 10.1017/S0140525X0999152XCrossRefGoogle ScholarPubMed
Herrmann, E., Hare, B., Cissewski, J., & Tomasello, M. (2011). A comparison of temperament in nonhuman apes and human infants. Developmental Science, 14(6), 13931405. https://doi.org/10.1111/j.1467-7687.2011.01082.xCrossRefGoogle ScholarPubMed
Hirter, K. N., Miller, E. N., Stimpson, C. D., Phillips, K. A., Hopkins, W. D., Hof, P. R., … Raghanti, M. A. (2021). The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Structure & Function, 226(6), 19091923. doi: 10.1007/s00429-021-02300-0CrossRefGoogle ScholarPubMed
Howes, C., & Spieker, S. (2008). Attachment relationships in the context of multiple caregivers. In J. Cassidy & P. R. Shaver (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed., pp. 317332). Guilford Press.Google Scholar
Hrdy, S. B. (2011). Mothers and others: The evolutionary origins of mutual understanding. Belknap Press.CrossRefGoogle Scholar
Hrdy, S. B., & Burkart, J. M. (2020). The emergence of emotionally modern humans: Implications for language and learning. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 375(1803), 20190499. doi: 10.1098/rstb.2019.0499CrossRefGoogle ScholarPubMed
Jessen, S., & Grossmann, T. (2014). Unconscious discrimination of social cues from eye whites in infants. Proceedings of the National Academy of Sciences, 111, 1620816213.CrossRefGoogle ScholarPubMed
Jessen, S., & Grossmann, T. (2015). Neural signatures of conscious and unconscious emotional face processing in human infants. Cortex, 64, 260270. doi: 10.1016/j.cortex.2014.11.007CrossRefGoogle ScholarPubMed
Jessen, S., & Grossmann, T. (2016). The developmental emergence of unconscious fear processing from eyes in infancy. Journal of Experimental Child Psychology, 142, 334343.CrossRefGoogle Scholar
Jessen, S., & Grossmann, T. (2020). The developmental origins of subliminal face processing. Neuroscience and Biobehavioral Reviews, 116, 454460. doi: 10.1016/j.neubiorev.2020.07.003CrossRefGoogle ScholarPubMed
Johnson, M. H., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., … Richards, J. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17, 599619.CrossRefGoogle ScholarPubMed
Kagan, J., & Snidman, N. (2004). The long shadow of temperament. Harvard University Press.Google Scholar
Kagan, J., Snidman, N., Kahn, V., & Towsley, S. (2007). The preservation of two infant temperaments into adolescence. Monographs of the Society for Research in Child Development, 72(2), 175, vii; discussion 76–91. doi:10.1111/j.1540-5834.2007.00436.xGoogle ScholarPubMed
Kemp, A. H., & Guastella, A. J. (2011). The role of oxytocin in human affect: A novel hypothesis. Current Directions in Psychological Science, 20, 222231.CrossRefGoogle Scholar
Keysers, C., & Gazzola, V. (2006). Towards a unifying neural theory of social cognition. Progress in Brain Research, 156, 379401. doi: 10.1016/s0079-6123(06)56021-2CrossRefGoogle ScholarPubMed
Kiel, E. J., & Buss, K. A. (2011). Prospective relations among fearful temperament, protective parenting, and social withdrawal: The role of maternal accuracy in a moderated mediation framework. Journal of Abnormal Child Psychology, 39(7), 953966. doi: 10.1007/s10802-011-9516-4CrossRefGoogle Scholar
Kiff, C. J., Lengua, L. J., & Zalewski, M. (2011). Nature and nurturing: Parenting in the context of child temperament. Clinical Child and Family Psychology Review, 14(3), 251301. doi: 10.1007/s10567-011-0093-4CrossRefGoogle ScholarPubMed
Klein, M. R., Lengua, L. J., Thompson, S. F., Moran, L., Ruberry, E. J., Kiff, C., & Zalewski, M. (2018). Bidirectional relations between temperament and parenting predicting preschool-age children's adjustment. Journal of Clinical Child and Adolescent Psychology, 47(Suppl. 1), S113S126. doi: 10.1080/15374416.2016.1169537CrossRefGoogle ScholarPubMed
Knoblich, G., & Sebanz, N. (2008). Evolving intentions for social interaction: From entrainment to joint action. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1499), 20212031. doi: 10.1098/rstb.2008.0006CrossRefGoogle ScholarPubMed
Kochanska, G., Gross, J. N., Lin, M. H., & Nichols, K. E. (2002). Guilt in young children: Development, determinants, and relations with a broader system of standards. Child Development, 73(2), 461482. doi: 10.1111/1467-8624.00418CrossRefGoogle ScholarPubMed
Kohrt, B. A., Ottman, K., Panter-Brick, C., Konner, M., & Patel, V. (2020). Why we heal: The evolution of psychological healing and implications for global mental health. Clinical Psychology Review, 82, 101920. doi: 10.1016/j.cpr.2020.101920CrossRefGoogle ScholarPubMed
Konner, M. (2018). Nonmaternal care: A half-century of research. Physiology & Behavior, 193(Pt A), 179186. doi:10.1016/j.physbeh.2018.03.025CrossRefGoogle Scholar
Kramer, K. L. (2011). The evolution of human parental care and recruitment of juvenile help. Trends in Ecology & Evolution, 26(10), 533540. doi: 10.1016/j.tree.2011.06.002CrossRefGoogle ScholarPubMed
Kramer, K. L. (2019). How there got to be so many of us: The evolutionary story of population growth and a life history of cooperation. Journal of Anthropological Research, 75(4), 472497. doi: 10.1086/705943CrossRefGoogle Scholar
Kramer, K. L., & Otárola-Castillo, E. (2015). When mothers need others: The impact of hominin life history evolution on cooperative breeding. Journal of Human Evolution, 84, 1624. doi: 10.1016/j.jhevol.2015.01.009CrossRefGoogle ScholarPubMed
Kramer, K. L., & Veile, A. (2018). Infant allocare in traditional societies. Physiology & Behavior, 193(Pt A), 117126. doi: 10.1016/j.physbeh.2018.02.054CrossRefGoogle ScholarPubMed
Kret, M. E., Jaasma, L., Bionda, T., & Wijnen, J. G. (2016). Bonobos (Pan paniscus) show an attentional bias toward conspecifics’ emotions. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 37613766. doi: 10.1073/pnas.1522060113CrossRefGoogle ScholarPubMed
Kret, M. E., Muramatsu, A., & Matsuzawa, T. (2018). Emotion processing across and within species: A comparison between humans (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 132(4), 395409. doi: 10.1037/com0000108CrossRefGoogle ScholarPubMed
Kret, M. E., Prochazkova, E., Sterck, E. H. M., & Clay, Z. (2020). Emotional expressions in human and non-human great apes. Neuroscience & Biobehavioral Reviews, 115, 378395. doi: 10.1016/j.neubiorev.2020.01.027CrossRefGoogle ScholarPubMed
Kret, M. E., & van Berlo, E. (2021). Attentional bias in humans toward human and bonobo expressions of emotion. Evolutionary Psychology, 19(3), 14747049211032816. doi: 10.1177/14747049211032816CrossRefGoogle ScholarPubMed
Krol, K. M., Monakhov, M., Lai, P. S., Ebstein, R., & Grossmann, T. (2015). Genetic variation in CD38 and breastfeeding experience interact to impact infants’ attention to social eye cues. Proceedings of the National Academy of Sciences, 112, E5434E5442.CrossRefGoogle ScholarPubMed
Krol, K. M., Puglia, M. H., Morris, J. P., Connelly, J. J., & Grossmann, T. (2019). Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Developmental Cognitive Neuroscience, 37, 100648. doi: 10.1016/j.dcn.2019.100648CrossRefGoogle ScholarPubMed
Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., … Meyer-Lindenberg, A. (2011). City living and urban upbringing affect neural social stress processing in humans. Nature, 474, 498. doi: 10.1038/nature10190. https://www.nature.com/articles/nature10190#supplementary-informationCrossRefGoogle Scholar
Leppanen, J., Ng, K. W., Tchanturia, K., & Treasure, J. (2017). Meta-analysis of the effects of intranasal oxytocin on interpretation and expression of emotions. Neuroscience and Biobehavioral Reviews, 78, 125144. doi: 10.1016/j.neubiorev.2017.04.010CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (New York, N.Y.), 274, 15271531.CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269284.CrossRefGoogle ScholarPubMed
Lozier, L. M., Cardinale, E. M., VanMeter, J. W., & Marsh, A. A. (2014). Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry, 71(6), 627636. doi: 10.1001/jamapsychiatry.2013.4540CrossRefGoogle ScholarPubMed
Marsh, A. A. (2015). Neural, cognitive, and evolutionary foundations of human altruism. WIREs Cognitive Science, 7, 5971.CrossRefGoogle ScholarPubMed
Marsh, A. A., & Ambady, N. (2007). The influence of the fear facial expression on prosocial responding. Cognition & Emotion, 21, 225247.CrossRefGoogle Scholar
Marsh, A. A., & Blair, R. J. R. (2008). Deficits in facial affect recognition among antisocial populations: A meta-analysis. Neuroscience & Biobehavioral Reviews, 32, 454465.CrossRefGoogle ScholarPubMed
Marsh, A. A., Kozak, M. N., & Ambady, N. (2007). Accurate identification of fear facial expressions predicts prosocial behavior. Emotion, 7, 239251.CrossRefGoogle ScholarPubMed
Marsh, A. A., Stoycos, S. A., Brethel-Haurwitz, K. M., Robinson, P., VanMeter, J. W., & Cardinale, E. M. (2014). Neural and cognitive characteristics of extraordinary altruists. Proceedings of the National Academy of Sciences of the United States of America, 111, 1503615041.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1E24. doi: 10.1111/j.1749-6632.2012.06751.xCrossRefGoogle ScholarPubMed
Palmatier, M. A., Kang, A. M., & Kidd, K. K. (1999). Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biological Psychiatry, 46(4), 557567. doi: 10.1016/s0006-3223(99)00098-0CrossRefGoogle ScholarPubMed
Peltola, M. J., Forssman, L., van Puura, K., & Leppänen, J. M. (2015). Attention to faces expressing negative emotion at 7 months predicts attachment security at 14 months. Child Development, 86(5), 13211332. doi: 10.1111/cdev.12380CrossRefGoogle ScholarPubMed
Peltola, M. J., Leppänen, J. M., Mäki, S., & Hietanen, J. K. (2009). Emergence of enhanced attention to fearful faces between 5 and 7 months of age. Social Cognitive and Affective Neuroscience, 4, 134142.CrossRefGoogle ScholarPubMed
Peltola, M. J., Yrttiaho, S., & Leppänen, J. M. (2018). Infants' attention bias to faces as an early marker of social development. Developmental Science, 21(6), e12687. doi: 10.1111/desc.12687CrossRefGoogle ScholarPubMed
Preston, S. D. (2013). The origins of altruism in offspring care. Psychological Bulletin, 139(6), 13051341. doi: 10.1037/a0031755CrossRefGoogle ScholarPubMed
Preston, S. D., & de Waal, F. B. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25(1), 120; discussion 20–71. doi:10.1017/s0140525x02000018CrossRefGoogle ScholarPubMed
Prinz, W. (1990). A common coding approach to perception and action. In O., Neumann, & W., Prinz (Eds.), Relationships between perception and action (pp. 167201). Springer.CrossRefGoogle Scholar
Raghanti, M. A., Edler, M. K., Stephenson, A. R., Munger, E. L., Jacobs, B., Hof, P. R., … Lovejoy, C. O. (2018). A neurochemical hypothesis for the origin of hominids. Proceedings of the National Academy of Sciences of the United States of America, 115(6), E1108E1116. doi: 10.1073/pnas.1719666115Google ScholarPubMed
Rajhans, P., Altvater-Mackensen, N., Vaish, A., & Grossmann, T. (2016). Children's altruistic behavior in context: The role of emotional responsiveness and culture. Scientific Reports, 6, 24089.CrossRefGoogle ScholarPubMed
Rajhans, P., Missana, M., Krol, K. M., & Grossmann, T. (2015). The association of temperament and maternal empathy with individual differences in infants' neural responses to emotional body expressions. Development and Psychopathology, 27(4 Pt 1), 12051216. doi:10.1017/s0954579415000772CrossRefGoogle ScholarPubMed
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An ERP and cortical source analysis study. Developmental Psychology, 41, 598615.CrossRefGoogle Scholar
Rilling, J. K. (2013). The neural and hormonal bases of human parental care. Neuropsychologia, 51(4), 731747. doi: 10.1016/j.neuropsychologia.2012.12.017CrossRefGoogle ScholarPubMed
Rilling, J. K., & Young, L. J. (2014). The biology of mammalian parenting and its effect on offspring social development. Science (New York, N.Y.), 345(6198), 771776. doi: 10.1126/science.1252723CrossRefGoogle ScholarPubMed
Rosenberg, K. R. (2021). The evolution of human infancy: Why it helps to be helpless. Annual Review of Anthropology, 50(1), 423440. doi: 10.1146/annurev-anthro-111819-105454CrossRefGoogle Scholar
Sandstrom, A., Uher, R., & Pavlova, B. (2020). Prospective association between childhood behavioral inhibition and anxiety: A meta-analysis. Journal of Abnormal Child Psychology, 48(1), 5766. doi: 10.1007/s10802-019-00588-5Google ScholarPubMed
Schultz, W. (2007a). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203210. doi: 10.1016/j.tins.2007.03.007CrossRefGoogle ScholarPubMed
Schultz, W. (2007b). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288. doi: 10.1146/annurev.neuro.28.061604.135722CrossRefGoogle ScholarPubMed
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., & Rauch, S. L. (2003). Inhibited and uninhibited infants “grown up”: Adult amygdalar response to novelty. Science (New York, N.Y.), 300(5627), 19521953. doi: 10.1126/science.1083703CrossRefGoogle ScholarPubMed
Shahrestani, S., Kemp, A. H., & Guastella, A. J. (2013). The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: A meta-analysis. Neuropsychopharmacology, 38(10), 19291936. doi: 10.1038/npp.2013.86CrossRefGoogle ScholarPubMed
Slobodskaya, H. R., Gartstein, M. A., Nakagawa, A., & Putnam, S. P. (2012). Early temperament in Japan, the United States, and Russia: Do cross-cultural differences decrease with age? Journal of Cross-Cultural Psychology, 44(3), 438460. doi: 10.1177/0022022112453316CrossRefGoogle Scholar
Smolka, M. N., Schumann, G., Wrase, J., Grüsser, S. M., Flor, H., Mann, K., … Heinz, A. (2005). Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. Journal of Neuroscience, 25(4), 836842. doi: 10.1523/jneurosci.1792-04.2005CrossRefGoogle ScholarPubMed
Sosna, M. M. G., Twomey, C. R., Bak-Coleman, J., Poel, W., Daniels, B. C., Romanczuk, P., & Couzin, I. D. (2019). Individual and collective encoding of risk in animal groups. Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20556. doi: 10.1073/pnas.1905585116CrossRefGoogle ScholarPubMed
Sroufe, L. A. (1977). Wariness of strangers and the study of infant development. Child Development, 48(3), 731746. doi: 10.2307/1128323CrossRefGoogle Scholar
Steinbeis, N., Bernhardt, B. C., & Singer, T. (2012). Impulse control and underlying functions of the left dlPFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron, 73, 10401051. doi: 10.1016/j.neuron.2011.12.027CrossRefGoogle ScholarPubMed
Stern, J. A., & Cassidy, J. (2018). Empathy from infancy to adolescence: An attachment perspective on the development of individual differences. Developmental Review, 47, 122. https://doi.org/10.1016/j.dr.2017.09.002CrossRefGoogle Scholar
Stimpson, C. D., Barger, N., Taglialatela, J. P., Gendron-Fitzpatrick, A., Hof, P. R., Hopkins, W. D., & Sherwood, C. C. (2016). Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social Cognitive and Affective Neuroscience, 11(3), 413422. doi: 10.1093/scan/nsv128CrossRefGoogle ScholarPubMed
Tan, J., Ariely, D., & Hare, B. (2017). Bonobos respond prosocially toward members of other groups. Scientific Reports, 7(1), 14733. doi: 10.1038/s41598-017-15320-wCrossRefGoogle ScholarPubMed
Tan, J., & Hare, B. (2013). Bonobos share with strangers. PLoS ONE, 8(1), e51922. doi: 10.1371/journal.pone.0051922CrossRefGoogle ScholarPubMed
Thompson, A., & Steinbeis, N. (2021). Computational modelling of attentional bias towards threat in paediatric anxiety. Developmental Science, 24(3), e13055. doi: 10.1111/desc.13055CrossRefGoogle ScholarPubMed
Thornton, A., & McAuliffe, K. (2015). Cognitive consequences of cooperative breeding? A critical appraisal. Journal of Zoology, 295(1), 1222. https://doi.org/10.1111/jzo.12198CrossRefGoogle Scholar
Thornton, A., McAuliffe, K., Dall, S. R., Fernandez-Duque, E., Garber, P. A., & Young, A. J. (2016). Fundamental problems with the cooperative breeding hypothesis. A reply to Burkart & van Schaik. Journal of Zoology (1987), 299(2), 8488. doi: 10.1111/jzo.12351CrossRefGoogle ScholarPubMed
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410433.CrossRefGoogle Scholar
Tomasello, M. (2014). The ultrasocial animal. European Journal of Social Psychology, 44, 187194.CrossRefGoogle ScholarPubMed
Tomasello, M. (2019). Becoming human: A theory of ontogeny. Harvard University Press.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral & Brain Sciences, 28, 675691.CrossRefGoogle ScholarPubMed
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., & Herrmann, E. (2012). Two key steps in the evolution of human cooperation: The interdependence hypothesis. Current Anthropology, 53(6), 673692.CrossRefGoogle Scholar
Tsai, J. L. (2017). Ideal affect in daily life: Implications for affective experience, health, and social behavior. Current Opinion in Psychology, 17, 118128. doi: 10.1016/j.copsyc.2017.07.004CrossRefGoogle ScholarPubMed
Tuulari, J. J., Kataja, E. L., Leppänen, J. M., Lewis, J. D., Nolvi, S., Häikiö, T., … Karlsson, H. (2020). Newborn left amygdala volume associates with attention disengagement from fearful faces at eight months. Developmental Cognitive Neuroscience, 45, 100839. doi: 10.1016/j.dcn.2020.100839CrossRefGoogle ScholarPubMed
Ulfig, N., Setzer, M., & Bohl, J. (2003). Ontogeny of the human amygdala. Annals of the New York Academy of Sciences, 985, 2233. doi: 10.1111/j.1749-6632.2003.tb07068.xCrossRefGoogle ScholarPubMed
Vaesen, K. (2012). Cooperative feeding and breeding, and the evolution of executive control. Biology & Philosophy, 27(1), 115124. doi: 10.1007/s10539-011-9286-yCrossRefGoogle ScholarPubMed
van Ijzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2(8), e147e147. doi: 10.1038/tp.2012.73CrossRefGoogle ScholarPubMed
Warneken, F. (2015). Precocious prosociality: Why do young children help? Child Development Perspectives, 9(1), 16. https://doi.org/10.1111/cdep.12101CrossRefGoogle Scholar
Warneken, F., & Tomasello, M. (2007). Helping and cooperation at 14 months of age. Infancy, 11, 271294.CrossRefGoogle ScholarPubMed
Wellman, H. M., Lane, J. D., LaBounty, J., & Olson, S. L. (2011). Observant, nonaggressive temperament predicts theory of mind development. Developmental Science, 14(2), 319326. doi: 10.1111/j.1467-7687.2010.00977.xCrossRefGoogle ScholarPubMed
Whalen, P. J., Kagan, J., Cook, R. G., Davis, F. C., Kim, H., Polis, S., … Johnstone, T. (2004). Human amygdala responsivity to masked fearful eye whites. Science, 306(5704), 2061. doi: 10.1126/science.1103617CrossRefGoogle ScholarPubMed
Wobber, V., Hare, B., Maboto, J., Lipson, S., Wrangham, R., & Ellison, P. T. (2010). Differential changes in steroid hormones before competition in bonobos and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 1245712462. doi: 10.1073/pnas.1007411107CrossRefGoogle ScholarPubMed
Zeder, M. A. (2012). The domestication of animals. Journal of Anthropological Research, 68(2), 161190. doi: 10.3998/jar.0521004.0068.201CrossRefGoogle Scholar