Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T12:10:22.305Z Has data issue: false hasContentIssue false

Involvement of sphaeractinomyxon in the life cycle of mugiliform-infecting Myxobolus (Cnidaria, Myxosporea) reveals high functionality of actinospore morphotype in promoting transmission

Published online by Cambridge University Press:  29 June 2020

Sónia Rocha*
Affiliation:
Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313Porto, Portugal Laboratory of Animal Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208Matosinhos, Portugal
Luís F. Rangel*
Affiliation:
Laboratory of Animal Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208Matosinhos, Portugal Department of Biology, Faculty of Sciences (FCUP), University of Porto, Rua do Campo Alegre s/n, FC4, 4169-007Porto, Portugal
Graça Casal
Affiliation:
University Institute of Health Sciences & Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central da Gandra no. 1317, 4585-116Gandra, Portugal
Carlos Azevedo
Affiliation:
Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313Porto, Portugal Laboratory of Animal Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208Matosinhos, Portugal
Pedro Rodrigues
Affiliation:
Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313Porto, Portugal i3S – Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen no. 208, 4200-135Porto, Portugal
Maria J. Santos
Affiliation:
Laboratory of Animal Pathology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208Matosinhos, Portugal Department of Biology, Faculty of Sciences (FCUP), University of Porto, Rua do Campo Alegre s/n, FC4, 4169-007Porto, Portugal
*
Author for correspondence: Sónia Rocha, E-mail: sonia.oliveira.rocha@gmail.com; Luís F. Rangel, E-mail: luisfiliperangel@sapo.pt
Author for correspondence: Sónia Rocha, E-mail: sonia.oliveira.rocha@gmail.com; Luís F. Rangel, E-mail: luisfiliperangel@sapo.pt

Abstract

Four new actinospore types belonging to the sphaeractinomyxon collective group (Cnidaria, Myxosporea) are described from the coelomic cavity of a marine Baltidrilus sp. (Oligochaeta, Naididae) inhabiting a northern Portuguese estuary. Host identification supports the usage of marine oligochaetes, namely of the family Naididae Ehrenberg, 1828, as definitive hosts for myxosporeans inhabiting estuarine/marine environments. The absence of mixed infections in the host specimens analysed is suggested to reflect the influence of host-, parasite- and environmental-related factors regulating myxosporean–annelid interactions. Molecular analyses matched the SSU rDNA sequences of three of the four new types with those of mugiliform-infecting Myxobolus spp., namely Myxobolus mugiliensis and a Myxobolus sp. from flathead grey mullet Mugil cephalus, and Myxobolus labrosus from thicklip grey mullet Chelon labrosus. These results directly link, for the first time, the sphaeractinomyxon collective group to a myxospore counterpart, further confirming their previously hypothesized specific involvement in the life cycle of myxobolids that infect mullets. Acknowledging this life cycle relationship, the functionality of the sphaeractinomyxon morphotype is suggested to have been decisive for the evolutionary hyperdiversification of the genus Myxobolus in mullets. Unlike other actinospore morphotypes, sphaeractinomyxon lack valvular processes, which implies a limited capability for buoyancy. Considering the benthic-feeding nature of mullets, this feature is most likely crucial in promoting successful transmission to the vertebrate host.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

S. Rocha and L. F. Rangel are to be considered joint first authors.

References

Alexander, JD, Kerans, BL, El-Matbouli, M, Hallett, SL and Stevens, L (2015) Annelid-myxosporean interactions. In Okamura, B, Gruhl, A and Bartholomew, JL (eds), Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing, pp. 217234.CrossRefGoogle Scholar
Almeida, PR (2003) Feeding ecology of Liza ramada (Risso, 1810) (Pisces, Mugilidae) in a south-western estuary of Portugal. Estuarine, Coastal and Shelf Science 57, 313323.CrossRefGoogle Scholar
Antonio, DB, El-Matbouli, M and Hedrick, RP (1999) Detection of early developmental stages of Myxobolus cerebralis in fish and tubificid oligochaete hosts by in Situ hybridization. Parasitology Research 85, 942944.CrossRefGoogle ScholarPubMed
Arslan, N (2006) Records of Aphanoneura and aquatic oligochaetes from Turkey. Fresenius Environmental Bulletin 15, 17.Google Scholar
Atkinson, SD, Bartošová-Sojková, P, Whipps, CM and Bartholomew, JL (2015) Approaches for characterising myxozoan species. In Okamura, B, Gruhl, A and Bartholomew, JL (eds), Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing, pp. 111123.CrossRefGoogle Scholar
Atkinson, SD, Bartholomew, JL and Rouse, GW (2020) The invertebrate host of salmonid fish parasites Ceratonova shasta and Parvicapsula minibicornis (Cnidaria), is a novel fabriciid annelid, Manayunkia occidentalis sp. nov. (Sabellida: Fabriciidae). Zootaxa 4751, 310320.CrossRefGoogle Scholar
Barta, JR, Martin, DS, Liberator, PA, Dashkevicz, M, Anderson, JW, Feighner, SD, Elbrecht, A, Perkins-Barrow, A, Jenkins, MC, Danforth, HD, Ruff, MD and Profous-Juchelka, H (1997) Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. Journal of Parasitology 83, 262271.CrossRefGoogle ScholarPubMed
Bartholomew, JL, Whipple, MJ, Stevens, DG and Fryer, JL (1997) The life cycle of Ceratomyxa Shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. Journal of Parasitology 83, 859868.CrossRefGoogle ScholarPubMed
Bartholomew, JL, Atkinson, SD and Hallett, SL (2006) Involvement of Manayunkia speciosa (Annelida: Polychaeta: Sabellidae) in the life cycle of Parvicapsula minibicornis, a myxozoan parasite of Pacific salmon. Journal of Parasitology 92, 742748.CrossRefGoogle ScholarPubMed
Belem, AM and Pote, LM (2001) Portals of entry and systemic localization of proliferative gill disease organisms in channel catfish Ictalurus punctatus. Diseases of Aquatic Organisms 48, 3742.CrossRefGoogle ScholarPubMed
Brinkhurst, RO (1971) A Guide for the Identification of British Aquatic Oligochaeta, 20th Edn.United Kingdom: Freshwater Biological Association.Google Scholar
Caffara, M, Raimondi, E, Florio, D, Marcer, F, Quaglio, F and Fioravanti, ML (2009) The life cycle of Myxobolus lentisuturalis (Myxozoa: Myxobolidae), from goldfish (Carassius auratus auratus), involves a Raabeia-type actinospore. Folia Parasitologica 56, 612.CrossRefGoogle Scholar
Cardim, J, Silva, D, Hamoy, I, Matos, E and Abrunhosa, F (2018) Myxobolus bragantinus N. sp. (Cnidaria: Myxosporea) from the gill filaments of the redeye mullet, Mugil rubrioculus (Mugiliformes: Mugilidae), on the eastern Amazon coast. Zootaxa 4482, 177187.CrossRefGoogle Scholar
Cardona, L (2001) Non-competitive coexistence between Mediterranean grey mullet: evidence from seasonal changes in food availability, niche breadth and trophic overlap. Journal of Fish Biology 59, 729744.CrossRefGoogle Scholar
Cardona, L (2006) Habitat selection by grey mullets (Osteichthyes: Mugilidae) in Mediterranean estuaries: the role of salinity. Scientia Marina 70, 443455.CrossRefGoogle Scholar
Caullery, M and Mesnil, F (1904) Sur un type nouveau (Sphaeractinomyxon Stolci n. g. n. sp.) d’ Actinomyxidies, et son développement. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales 56, 408410.Google Scholar
Caullery, M and Mesnil, F (1905) Recherches sur les Actinomyxidies. I. Sphaeractinomyxon stolci. Archiv für Protistenkunde 6, 272308.Google Scholar
Crosetti, D and Blaber, SJM (2015) Biology, Ecology and Culture of Grey Mullets (Mugilidae). Boca Raton, Florida, USA: CRC Press, pp. 539.CrossRefGoogle Scholar
El-Mansy, A, Székely, C and Molnár, K (1998) Studies on the occurrence of actinosporean stages of fish myxosporeans in a fish farm of Hungary, with the description of triactinomyxon, raabeia, aurantiactinomyxon and neoactinomyxon types. Acta Veterinaria Hungarica 46, 259284.Google Scholar
Erséus, C, Wetzel, MJ and Gustavsson, L (2008) ICZN Rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744, 6668.CrossRefGoogle Scholar
Eszterbauer, E, Marton, S, Rácz, OZ, Letenyei, M and Molnár, K (2006) Morphological and genetic differences among actinosporean stages of fish-parasitic myxosporeans (Myxozoa): difficulties of species identification. Systematic Parasitology 65, 97114.CrossRefGoogle ScholarPubMed
Eszterbauer, E, Atkinson, S, Diamant, A, Morris, D, El-Matbouli, M and Hartikainen, H (2015) Myxozoan life cycles: practical approaches and insights. In Okamura, B, Gruhl, A and Bartholomew, JL (eds), Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing, pp. 175198.CrossRefGoogle Scholar
Feng, J-M, Xiong, J, Zhang, J-Y, Yang, Y-L, Yao, B, Zhou, Z-G and Miao, W (2014) New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria. Molecular Phylogenetics and Evolution 81, 1018.CrossRefGoogle ScholarPubMed
Fiala, I, Bartošová-Sojková, P, Okamura, B and Hartikainen, H (2015) Classification and phylogenetics of Myxozoa. In Okamura, B, Gruhl, A and Bartholomew, JL (eds), Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing, pp. 85110.CrossRefGoogle Scholar
Fontes, I, Hallett, SL and Mo, TA (2015) Comparative epidemiology of myxozoan diseases. In Okamura, B, Gruhl, A and Bartholomew, JL (eds), Myxozoan Evolution, Ecology and Development. Switzerland: Springer International Publishing, pp. 317341.CrossRefGoogle Scholar
Hallett, SL and Bartholomew, JL (2011) Myxobolus cerebralis and Ceratomyxa shasta. In Woo, PTK and Buckmann, K (eds), Fish Parasites: Pathobiology and Protection. Wallingford, United Kingdom: CAB International, pp. 131162.Google Scholar
Hallett, SL and Diamant, A (2001) Ultrastructure and small-subunit ribosomal DNA sequence of Henneguya lesteri N. sp. (Myxosporea), a parasite of sand whiting Sillago analis (Sillaginidae) from the coast of Queensland, Australia. Diseases of Aquatic Organisms 46, 197212.CrossRefGoogle ScholarPubMed
Hallett, SL and Lester, RJ (1999) Actinosporeans (Myxozoa) with four developing spores within a pansporocyst: Tetraspora discoidea n. g. n. sp. and Tetraspora rotundum n. sp. International Journal of Parasitology 29, 419427.CrossRefGoogle Scholar
Hallett, SL, Erséus, C and Lester, RJG (1997) Actinosporea from Hong Kong marine oligochaeta. In Morton, B (ed.), Proceedings of the Eight International Marine Biological Workshop: The Marine flora and Fauna of Hong Kong and Southern China. Hong Kong: Hong Kong University Press, pp. 17.Google Scholar
Hallett, SL, O'Donoghue, PJ and Lester, RJG (1998) Structure and development of a marine actinosporean, Sphaeractinomyxon Ersei n. sp. (Myxozoa). Journal of Eukaryotic Microbiology 45, 142150.CrossRefGoogle Scholar
Hallett, SL, Erséus, C and Lester, RJ (1999) Actinosporeans (Myxozoa) from marine oligochaetes of the Great Barrier Reef. Systematic Parasitology 44, 4957.CrossRefGoogle ScholarPubMed
Hallett, SL, Erséus, C, O'Donoghue, PJ and Lester, RJG (2001) Parasite fauna of Australian marine oligochaetes. Memoirs of the Queensland Museum 46, 555576.Google Scholar
Hallett, SL, Atkinson, SD and El-Matbouli, M (2002) Molecular characterisation of two aurantiactinomyxon (Myxozoa) phenotypes reveals one genotype. Journal of Fish Diseases 25, 627631.CrossRefGoogle Scholar
Hallett, SL, Atkinson, SD, Erséus, C and El-Matbouli, M (2004) Molecular methods clarify morphometric variation in triactinomyxon spores (Myxozoa) released from different oligochaete hosts. Systematic Parasitology 57, 114.CrossRefGoogle ScholarPubMed
Hillis, DM and Dixon, MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411453.CrossRefGoogle ScholarPubMed
Holzer, AS, Sommerville, C and Wootten, R (2003) Tracing the route of Sphaerospora truttae from the entry locus to the target organ of the host, Salmo salar L., using an optimized and specific in situ hybridization technique. Journal of Fish Diseases 26, 647655.CrossRefGoogle ScholarPubMed
Holzer, AS, Sommerville, C and Wootten, R (2004) Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. International Journal of Parasitology 34, 10991111.CrossRefGoogle Scholar
Holzer, AS, Bartošová-Sojková, P, Born-Torrijos, A, Lövy, A, Hartigan, A and Fiala, I (2018) The joint evolution of the Myxozoa and their alternate hosts: a cnidarian recipe for success and vast biodiversity. Molecular Ecology 27, 16511666.CrossRefGoogle ScholarPubMed
Karlsbakk, E and Køie, M (2012) The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitology Research 110, 211218.CrossRefGoogle Scholar
Kent, ML, Whitaker, DJ and Dawe, SC (1997) Parvicapsula minibicornis n. sp. (Myxozoa, Myxosporea) from the kidney of sockeye salmon (Oncorhynchus nerka) from British Columbia, Canada. Journal of Parasitology 83, 11531156.CrossRefGoogle ScholarPubMed
Kent, ML, Andree, KB, Bartholomew, JL, El-Matbouli, M, Desser, SS, Devlin, RH, Feist, SW, Hedrick, RP, Hoffmann, RW, Khattra, J, Hallett, SL, Lester, RJ, Longshaw, M, Palenzeula, O, Siddall, ME and Xiao, C (2001) Recent advances in our knowledge of the Myxozoa. Journal of Eukaryotic Microbiology 48, 395413.CrossRefGoogle ScholarPubMed
Kerans, BL and Zale, AV (2002) The ecology of Myxobolus cerebralis. American Fisheries Society Symposium 29, 145166.Google Scholar
Knight-Jones, P, Knight-Jones, EW, Mortimer-Jones, K, Nelson-Smith, A, Schmelz, RM and Timm, T (2017) Annelids (Phylum Annelida). In Hayward, PJ and Ryland, JS (eds), Handbook of the Marine Fauna of North-West Europe, 2nd Edn.United Kingdom: Oxford University Press, pp. 165270.Google Scholar
Køie, M, Whipps, CM and Kent, ML (2004) Ellipsomyxa gobii (Myxozoa: Ceratomyxidae) in the common goby Pomatoschistus microps (Teleostei: Gobiidae) uses Nereis spp. (Annelida: Polychaeta) as invertebrate hosts. Folia Parasitologica 51, 1418.CrossRefGoogle ScholarPubMed
Køie, M, Karlsbakk, E and Nylund, A (2007) A new genus Gadimyxa with three new species (Myxozoa, Parvicapsulidae) parasitic in marine fish (Gadidae) and the two-host life cycle of Gadimyxa atlantica n. sp. Journal of Parasitology 93, 14591467.CrossRefGoogle ScholarPubMed
Køie, M, Karlsbakk, E and Nylund, A (2008) The marine herring myxozoan Ceratomyxa auerbachi (Myxozoa: Ceratomyxidae) uses Chone infundibuliformis (Annelida: Polychaeta: Sabellidae) as invertebrate host. Folia Parasitologica 55, 100104.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Kvist, S, Sarkar, IN and Erséus, C (2010) Genetic variation and phylogeny of the cosmopolitan marine genus Tubificoides (Annelida: Clitellata: Naididae: Tubificinae). Molecular Phylogenetics and Evolution 57, 687702.CrossRefGoogle Scholar
Laffaille, P, Feunteun, E, Lefebvre, C, Radureau, A, Sagan, G and Lefeuvre, JC (2002) Can thin-lipped mullet directly exploit the primary and detritic production of European macrotidal salt marshes? Estuarine, Coastal and Shelf Science 54, 729736.CrossRefGoogle Scholar
Lemmon, JC and Kerans, BL (2001) Extraction of whirling disease myxospores from sediments using the plankton centrifuge and sodium hexametaphosphate. Intermountain Journal of Sciences 7, 5762.Google Scholar
Lom, J and Dyková, I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitologica 53, 136.CrossRefGoogle ScholarPubMed
Lom, J, McGeorge, J, Feist, SW, Morris, D and Adams, A (1997) Guidelines for the uniform characterisation of the actinosporean stages of parasites of the phylum Myxozoa. Diseases of Aquatic Organisms 30, 19.CrossRefGoogle Scholar
Longshaw, M and Feist, SW (2005) The role of morphology and ecology in the transmission of actinospore types (Myxozoa) in freshwater ecosystems. EAFP 12th International Conference, ‘Diseases of Fish and Shellfish’, Copenhagen, 11–16 September 2005. Book of Abstracts, P.13.10, p. 195.Google Scholar
Marcotegui, P and Martorelli, S (2017) Myxobolus saladensis sp. nov., a new species of gill parasite of Mugil liza (Osteichthyes, Mugilidae) from Samborombón Bay, Buenos Aires, Argentina. Iheringia. Série Zoologia 107, e2017026.CrossRefGoogle Scholar
Marques, A (1984) Contribution a la connaissance des Actinomyxidies: ultrastructure, cycle biologique, systématique (PhD thesis). Université des Sciences et Techniques de Languedoc, Montepellier, France, pp. 218.Google Scholar
Marszewska, L, Dumnicka, E and Normant-Saremba, M (2017) New data on benthic Naididae (Annelida, Clitellata) in Polish brackish waters. Oceanologia 59, 8184.CrossRefGoogle Scholar
Milanin, T, Atkinson, SD, Silva, MR, Alves, RG, Maia, AA and Adriano, EA (2017) Occurrence of two novel actinospore types (Cnidaria: Myxosporea) in Brazilian fish farms, and the creation of a novel actinospore collective group, Seisactinomyxon. Acta Parasitologica 62, 121128.CrossRefGoogle ScholarPubMed
Palumbi, S, Martin, A, Romano, S, McMillan, WO, Stice, L and Grabowski, G (2002) The Simple Fools Guide to PCR, Version 2.0. University of Hawaii, Honolulu. Available at http://palumbi.stanford.edu/SimpleFoolsMaster.Google Scholar
Puytorac, PD (1963) L'ultrastructure des cnidocystes de l'Actinomyxidae: Sphaeractinomyxon amanieui sp. nov. Comptes rendus de l'Académie des Sciences, Paris 256, 15941596.Google Scholar
Rangel, LF, Santos, MJ, Cech, G and Székely, C (2009) Morphology, molecular data, and development of Zschokkella mugilis (Myxosporea, Bivalvulida) in a polychaete alternate host, Nereis diversicolor. Journal of Parasitology 95, 561569.CrossRefGoogle Scholar
Rangel, LF, Cech, G, Székely, C and Santos, MJ (2011) A new actinospore type Unicapsulactinomyxon (Myxozoa), infecting the marine polychaete, Diopatra neapolitana (Polychaeta: Onuphidae) in the Aveiro estuary, Portugal. Parasitology 138, 698712.CrossRefGoogle ScholarPubMed
Rangel, LF, Rocha, S, Castro, R, Severino, R, Casal, G, Azevedo, C, Cavaleiro, F and Santos, MJ (2015) The life cycle of Ortholinea auratae (Myxozoa: Ortholineidae) involves an actinospore of the triactinomyxon morphotype infecting a marine oligochaete. Parasitology Research 114, 26712678.CrossRefGoogle ScholarPubMed
Rangel, LF, Castro, R, Rocha, S, Severino, R, Casal, G, Azevedo, C, Cavaleiro, F and Santos, MJ (2016 a) Tetractinomyxon stages genetically consistent with Sphaerospora dicentrarchi (Myxozoa: Sphaerosporidae) found in Capitella sp. (Polychaeta: Capitellidae) suggest potential role of marine polychaetes in parasite's life cycle. Parasitology 143, 10671073.CrossRefGoogle ScholarPubMed
Rangel, LF, Castro, R, Rocha, S, Cech, G, Casal, G, Azevedo, C, Székely, C, Cavaleiro, F and Santos, MJ (2016 b) Description of new types of sphaeractinomyxon actinospores (Myxozoa: Myxosporea) from marine tubificid oligochaetes, with a discussion on the validity of the tetraspora and the endocapsa as actinospore collective group names. Parasitology Research 115, 23412351.CrossRefGoogle ScholarPubMed
Rangel, LF, Rocha, S, Casal, G, Castro, R, Severino, R, Azevedo, C, Cavaleiro, F and Santos, MJ (2017) Life cycle inference and phylogeny of Ortholinea labracis N. sp. (Myxosporea: Ortholineidae), a parasite of the European seabass Dicentrarchus Labrax (Teleostei: Moronidae), in a Portuguese fish farm. Journal of Fish Diseases 40, 243262.CrossRefGoogle Scholar
Rocha, S, Casal, G, Rangel, L, Castro, R, Severino, R, Azevedo, C and Santos, MJ (2015) Ultrastructure and phylogeny of Ceratomyxa auratae n. sp. (Myxosporea: Ceratomyxidae), a parasite infecting the gilthead seabream Sparus aurata (Teleostei: Sparidae). Parasitology International 64, 305313.CrossRefGoogle Scholar
Rocha, S, Alves, Â, Antunes, C, Azevedo, C and Casal, G (2019 a) Molecular data infers the involvement of a marine aurantiactinomyxon in the life cycle of the myxosporean parasite Paramyxidium giardi (Cnidaria, Myxozoa). Parasitology 146, 15551563.CrossRefGoogle Scholar
Rocha, S, Alves, Â, Fernandes, P, Antunes, C, Azevedo, C and Casal, G (2019 b) New actinosporean description prompts union of the raabeia and echinactinomyxon collective groups (Cnidaria, Myxozoa). Diseases of Aquatic Organisms 135, 175191.CrossRefGoogle Scholar
Rocha, S, Rangel, LF, Castro, R, Severino, R, Azevedo, C, Santos, MJ and Casal, G (2019 c) The potential role of the sphaeractinomyxon collective group (Cnidaria, Myxozoa) in the life cycle of mugiliform-infecting myxobolids, with the morphological and molecular description of three new types from the oligochaete Tubificoides insularis. Journal of Invertebrate Pathology 160, 3342.CrossRefGoogle ScholarPubMed
Rocha, S, Casal, G, Alves, Â, Antunes, C, Rodrigues, P and Azevedo, C (2019 d) Myxozoan (Cnidaria, Myxozoa) biodiversity in mullets (Teleostei, Mugilidae) unravels hyperdiversification of Myxobolus (Cnidaria, Myxosporea). Parasitology Research 118, 32793305.CrossRefGoogle Scholar
Rocha, S, Azevedo, C, Oliveira, E, Alves, Â, Antunes, C, Rodrigues, P and Casal, G (2019 e) Phylogeny and comprehensive revision of mugiliform-infecting myxobolids (Myxozoa, Myxobolidae), with the morphological and molecular redescription of the cryptic species Myxobolus exiguus. Parasitology 146, 479496.CrossRefGoogle Scholar
Rocha, S, Alves, Â, Antunes, C, Fernandes, P, Azevedo, C and Casal, G (2020) Characterisation of sphaeractinomyxon types (Cnidaria: Myxozoa) from marine and freshwater oligochaetes in a Portuguese estuary, with the demise of the endocapsa collective group. Folia Parasitologica 66, 002.Google Scholar
Rosser, TG, Griffin, MJ, Quiniou, SM, Greenway, TE, Khoo, LH, Wise, DJ and Pote, LM (2014) Molecular and morphological characterization of myxozoan actinospore types from a commercial catfish pond in the Mississippi delta. Journal of Parasitology 100, 828839.CrossRefGoogle ScholarPubMed
Sharon, G, Ucko, M, Tamir, B and Diamant, A (2019) Co-existence of Myxobolus spp. (Myxozoa) in gray mullet (Mugil cephalus) juveniles from the Mediterranean Sea. Parasitology Research 118, 159167.CrossRefGoogle ScholarPubMed
Sweeney, P (2016) The current status of aquatic oligochaetes in Ireland. Bulletin of the Irish Biogeographical Society 40, 317.Google Scholar
Timm, T (2013) Baltidrilus nom. nov., a substitute name for the genus Heterochaeta Claparède, 1863 (Annelida, Clitellata, Tubificidae) non Heterochaeta Westwood, 1843 (Insecta, Mantodea, Mantidae). Zootaxa 3734, 499500.CrossRefGoogle Scholar
Whipps, CM, Adlard, RD, Bryant, MS, Lester, RJ, Findlay, V and Kent, ML (2003) First report of three Kudoa species from eastern Australia: Kudoa Thyrsites from mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa Minithyrsites N. sp. from sweeper (Pempheris Ypsilychnus). Journal of Eukaryotic Microbiology 50, 215219.CrossRefGoogle Scholar
Xi, BW, Zhang, JY, Xie, J, Pan, LK, Xu, P and Ge, XP (2013) Three actinosporean types (Myxozoa) from the oligochaete Branchiura sowerbyi in China. Parasitology Research 112, 15751582.CrossRefGoogle ScholarPubMed
Xi, BW, Zhou, ZG, Xie, J, Pan, LK, Yang, YL and Ge, XP (2015) Morphological and molecular characterization of actinosporeans infecting oligochaete Branchiura sowerbyi from Chinese carp ponds. Diseases of Aquatic Organisms 114, 217228.CrossRefGoogle ScholarPubMed
Xiao, C and Desser, SS (1998 a) Actinosporean stages of myxozoan parasites of oligochaetes from Lake Sasajewun, Algonquin Park, Ontario: new forms of triactinomyxon and raabeia. Journal of Parasitology 84, 9981009.CrossRefGoogle ScholarPubMed
Xiao, CX and Desser, SS (1998 b) Actinosporean stages of myxozoan parasites of oligochaetes from Lake Sasajewun, Algonquin Park, Ontario: new forms of echinactinomyxon, neoactinomyxum, aurantiactinomyxon, guyenotia, synactinomyxon and antonactinomyxon. Journal of Parasitology 84, 10101019.CrossRefGoogle ScholarPubMed
Yokoyama, H and Urawa, S (1997) Fluorescent labelling of actinospores for determining the portals of entry into fish. Diseases of Aquatic Organisms 30, 165169.CrossRefGoogle Scholar
Yokoyama, H, Ogawa, K and Wakabayashi, H (1993) Some biological characteristics of actinosporeans from the oligochaete Branchiura sowerbyi. Diseases of Aquatic Organisms 17, 223228.CrossRefGoogle Scholar
Yurakhno, VM and Ovcharenko, MO (2014) Study of Myxosporea (Myxozoa), infecting worldwide mullets with description of a new species. Parasitology Research 113, 36613674.CrossRefGoogle Scholar