Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T16:32:00.645Z Has data issue: false hasContentIssue false

The misidentification syndromes and source memory deficits with their neuroanatomical correlates from neuropsychological perspective

Published online by Cambridge University Press:  14 November 2023

Rafał Sikorski
Affiliation:
Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, ul. Debinki 7, Gdansk, Poland rafal.sikorski@gumed.edu.pl https://structure.mug.edu.pl/520 Department of Neurological Rehabilitation, St. Vincent Hospital, Pomeranian Hospitals, Ul. Wójta Radtkego 1, Gdynia, Poland
Emilia J. Sitek
Affiliation:
Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, ul. Debinki 7, Gdansk, Poland rafal.sikorski@gumed.edu.pl https://structure.mug.edu.pl/520 Department of Neurology, St. Adalbert Hospital, Copernicus PL, Al. Jana Pawla II 50, Gdańsk, Poland emilia.sitek@gumed.edu.pl https://structure.mug.edu.pl/520

Abstract

The suggested model is discussed with reference to two clinical populations with memory disorders – patients with misidentification syndromes and those with source memory impairment, both of whom may present with (broadly conceived) déjà vu phenomenon, without insight into false feeling of familiarity. The role of the anterior thalamic nucleus and retrosplenial cortex for autobiographical memory and familiarity is highlighted.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P., Dumont, J. R., & Warburton, E. C. (2011). Unraveling the contributions of the diencephalon to recognition memory: A review. Learning & Memory, 18(6), 384400. https://doi.org/10.1101/lm.1884611CrossRefGoogle ScholarPubMed
Aggleton, J. P., & O'Mara, S. M. (2022). The anterior thalamic nuclei: Core components of a tripartite episodic memory system. Nature Reviews Neuroscience, 23(8), 505516. https://doi.org/10.1038/s41583-022-00591-8CrossRefGoogle ScholarPubMed
Darby, R. R., Laganiere, S., Pascual-Leone, A., Prasad, S., & Fox, M. D. (2017). Finding the imposter: Brain connectivity of lesions causing delusional misidentifications. Brain, 140(2), 497507. https://doi.org/10.1093/brain/aww288CrossRefGoogle ScholarPubMed
Dillingham, C. M., Milczarek, M. M., Perry, J. C., & Vann, S. D. (2021). Time to put the mammillothalamic pathway into context. Neuroscience & Biobehavioral Reviews, 121, 6074. https://doi.org/10.1016/j.neubiorev.2020.11.031CrossRefGoogle ScholarPubMed
Ellis, H. D., & Lewis, M. B. (2001). Capgras delusion: A window on face recognition. Trends in Cognitive Sciences, 5(4), 149156. https://doi.org/10.1016/s1364-6613(00)01620-xCrossRefGoogle ScholarPubMed
Harding, A., Halliday, G., Caine, D., & Kril, J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain: A Journal of Neurology, 123(1), 141154. https://doi.org/10.1093/brain/123.1.141Google ScholarPubMed
Horn, M., Jardri, R., D'Hondt, F., Vaiva, G., Thomas, P., & Pins, D. (2016). The multiple neural networks of familiarity: A meta-analysis of functional imaging studies. Cognitive, Affective and Behavioral Neuroscience, 16(1), 176190. https://doi.org/10.3758/s13415-015-0392-1Google ScholarPubMed
Kopelman, M. D. (2015). What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia? Neuroscience & Biobehavioral Reviews, 54, 4656. https://doi.org/10.1016/j.neubiorev.2014.08.014CrossRefGoogle ScholarPubMed
Nuara, A., Nicolini, Y., D'Orio, P., Cardinale, F., Rizzolatti, G., Avanzini, P., … De Marco, D. (2020). Catching the imposter in the brain: The case of Capgras delusion. Cortex, 131, 295304. https://doi.org/10.1016/j.cortex.2020.04.025CrossRefGoogle ScholarPubMed
Powell, A. L., Hindley, E., Nelson, A. J., Davies, M., Amin, E., Aggleton, J. P., & Vann, S. D. (2018). Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances, 2, 239821281881123. https://doi.org/10.1177/2398212818811235CrossRefGoogle ScholarPubMed
Qin, P., Liu, Y., Shi, J., Wang, Y., Duncan, N., Gong, Q., … Northoff, G. (2012). Dissociation between anterior and posterior cortical regions during self-specificity and familiarity: A combined fMRI-meta-analytic study. Human Brain Mapping, 33(1), 154164. https://doi.org/10.1002/hbm.21201CrossRefGoogle ScholarPubMed
Segobin, S., Laniepce, A., Ritz, L., Lannuzel, C., Boudehent, C., Cabé, N., … Pitel, A. L. (2019). Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff's syndrome. Brain, 142(5), 14581470. https://doi.org/10.1093/brain/awz056CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. https://doi.org/10.1162/jocn.2008.21029Google Scholar
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792802. https://doi.org/10.1038/nrn2733CrossRefGoogle Scholar