Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T00:18:18.299Z Has data issue: false hasContentIssue false

Eating time variation from weekdays to weekends and its association with dietary intake and BMI in different chronotypes: findings from National Health and Nutrition Examination Survey (NHANES) 2017–2018

Published online by Cambridge University Press:  28 November 2023

Gabriela Pereira Teixeira*
Affiliation:
Chrononutrition Research Group, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
Nayara Bernardes da Cunha
Affiliation:
Chrononutrition Research Group, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
Catarina Machado Azeredo
Affiliation:
Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
Ana Elisa Madalena Rinaldi
Affiliation:
Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
Cibele Aparecida Crispim
Affiliation:
Chrononutrition Research Group, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
*
*Corresponding author: Dr G. P. Teixeira, email gabipereira@outlook.com

Abstract

Evidence suggests that differences in meal timing between weekends and weekdays can disrupt the body’s circadian rhythm, leading to a higher BMI. We aimed to investigate the associations between mealtime variation from weekdays to weekends (eating midpoint jetlag), dietary intake and anthropometric parameters, based on individuals’ chronotype. The study utilised data from National Health and Nutrition Examination Survey 2017–2018. Food consumption was estimated by weighted average of participants’ food intake on weekdays and weekends. Eating midpoint jetlag, defined as the difference between the midpoint of the first and last mealtimes on weekends and weekdays, was calculated. Chronotype was assessed by participants’ mid-sleep time on weekends, adjusted for sleep debt. Linear regression analysis was conducted to investigate the associations between variables. The sample was categorised into chronotype tertiles. Among individuals in the third chronotype tertile, there was a positive association between eating midpoint jetlag and BMI (β = 1·2; 95 % CI (1·13, 1·27)). Individuals in the first tertile showed a positive association between eating midpoint jetlag and energy (β = 96·9; 95 % CI (92·9, 101·7)), carbohydrate (β = 11·96; 95 % CI (11·2, 12·6)), fat (β = 3·69; 95 % CI (3·4, 3·8)), cholesterol (β = 32·75; 95 % CI (30·9, 34·6)) and sugar (β = 8·84; 95 % CI (8·3, 9·3)) intake on weekends. Among individuals with an evening tendency, delaying meals on weekends appears to be linked to a higher BMI. Conversely, among individuals with a morning tendency, eating meals later on weekends is associated with higher energetic intake on weekends.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bray, GA, Kim, KK & Wilding, JPH (2017) Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 18, 715723.CrossRefGoogle ScholarPubMed
World Health Organization (2019) International Statistical Classification of Diseases and Related Health Problems, 11th ed. Geneva: ICD-11, WHO.Google Scholar
Li, G, Chen, X, Jang, Y, et al. (2002) Obesity, coronary heart disease risk factors and diabetes in Chinese: an approach to the criteria of obesity in the Chinese population. Obes Rev 3, 167172.CrossRefGoogle Scholar
Calle, EE & Thun, MJ (2004) Obesity and cancer. Oncogene 23, 63656378.CrossRefGoogle ScholarPubMed
Fryar, CD, Carroll, MD & Afful, J (2020) Prevalence of High Weight-for-Recumbent Length among Infants and Toddlers from Birth to 24 Months of Age: United States, 1971–1974 through 2017–2018. NCHS Health E-Stats.Google Scholar
Corica, D, Aversa, T, Valenzise, M, et al. (2018) Does family history of obesity, cardiovascular, and metabolic diseases influence onset and severity of childhood obesity? Front Endocrinol 9, 187.CrossRefGoogle ScholarPubMed
Kivimäki, M, Batty, GD, Singh-Manoux, A, et al. (2009) Association between common mental disorder and obesity over the adult life course. Br J Psychiatry 195, 149155.CrossRefGoogle ScholarPubMed
Al-Kandari, YY (2006) Prevalence of obesity in Kuwait and its relation to sociocultural variables. Obes Rev 7, 147154.CrossRefGoogle ScholarPubMed
Crispim, CA & Mota, MC (2018) New perspectives on chrononutrition. Biol Rhythm Res 50, 115.Google Scholar
Baron, KG, Reid, KJ, Horn, LV, et al. (2013) Contribution of evening macronutrient intake to total caloric intake and body mass index. Appetite 60, 246251.CrossRefGoogle ScholarPubMed
Teixeira, GP, Barreto, ACF, Mota, MC, et al. (2019) Caloric midpoint is associated with total calorie and macronutrient intake and body mass index in undergraduate students. Chronobiol Int 36, 14181428.CrossRefGoogle ScholarPubMed
Berg, C, Lappas, G, Wolk, A, et al. (2009) Eating patterns and portion size associated with obesity in a Swedish population. Appetite 52, 2126.CrossRefGoogle Scholar
Zerón-Rugerio, MF, Hernáez, A, Porras-Loaiza, AP, et al. (2019) Eating jet lag: a marker of the variability in meal timing and its association with body mass index. Nutrients 11, 2980.CrossRefGoogle ScholarPubMed
Cermakian, N & Boivin, DB (2009) The regulation of central and peripheral circadian clocks in humans. Obes Rev 10, Suppl. 2, 2536.CrossRefGoogle ScholarPubMed
Teixeira, GP, Guimarães, KC, Soares, AGNS, et al. (2022) Role of chronotype in dietary intake, meal timing, and obesity: a systematic review. Nutr Rev 81, 7590.CrossRefGoogle ScholarPubMed
Maukonen, M, Kanerva, N, Partonen, T, et al. (2017) Chronotype differences in timing of energy and macronutrient intakes: a population-based study in adults. Obesity 25, 608615.CrossRefGoogle ScholarPubMed
Lucassen, EA, Zhao, X, Rother, KI, et al. (2013) Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLOS ONE 8, e56519.CrossRefGoogle ScholarPubMed
Muscogiuri, G, Barrea, L, Aprano, S, et al. (2020) Chronotype and adherence to the Mediterranean diet in obesity: results from the opera prevention project. Nutrients 12, 1354.CrossRefGoogle Scholar
Fárková, E, Šmotek, M, Bendová, Z, et al. (2019) Chronotype and social jet-lag in relation to body weight, appetite, sleep quality and fatigue. Biol Rhythm Res 52, 17444179.Google Scholar
Willett, W (1998) Nutritional Epidemiology, 2nd ed. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Lohman, TG, Roche, AF & Martorell, R (1988) Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics.Google Scholar
Mota, MC, Silva, CM, Balieiro, LCT, et al. (2019) Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLOS ONE 14, e0212126.CrossRefGoogle ScholarPubMed
Roenneberg, T, Wirz-Justice, A & Merrow, M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18, 8090.CrossRefGoogle ScholarPubMed
Reutrakul, S, Hood, MM, Crowley, SJ, et al. (2014) The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol Int 31, 6471.CrossRefGoogle ScholarPubMed
Roenneberg, T, Kuehnle, T, Juda, M, et al. (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11, 429438.CrossRefGoogle ScholarPubMed
Benedito-Silva, AA, Menna-Barreto, L, Marques, N, et al. (1990) A self-assessment questionnaire for the determination of morningness-eveningness types in Brazil. Prog Clin Biol Res 341B, 8998.Google ScholarPubMed
DeYoung, CG, Hasher, L, Djikic, M, et al. (2007) Morning people are stable people: circadian rhythm and the higher order factors of the Big Five. Pers Indiv Differ 43, 267276.CrossRefGoogle Scholar
Monk, TH, Buysse, DJ, Potts, JM, et al. (2004) Morningness-eveningness and lifestyle regularity. Chronobiol Int 21, 435443.CrossRefGoogle ScholarPubMed
Teixeira, GP, Balieiro, LCT, Gontijo, CA, et al. (2020) The association between chronotype, food craving and weight gain in pregnant women. J Hum Nutr Diet 33, 342350.CrossRefGoogle ScholarPubMed
Mendonza, FJ, Ilioudi, CM, Montes, MI, et al. (2018) Circadian preference, nighttime sleep and daytime functioning in Young adulthood. Sleep Biol Rhythms 8, 5262.Google Scholar
Yazdinezhad, A, Askarpour, M, Aboushamsia, MM, et al. (2019) Evaluating the effect of chronotype on meal timing and obesity in Iranian housewives: a cross-sectional study. J Adv Med Biomed Res 27, 3136.Google Scholar
Teixeira, GP, Mota, MC & Crispim, CA (2018) Eveningness is associated with skipping breakfast and poor nutritional intake in Brazilian undergraduate students. Chronobiol Int 35, 358367.CrossRefGoogle ScholarPubMed
Kobayashi Frisk, M, Hedner, J, Grote, L, et al. (2022) Eveningness is associated with sedentary behavior and increased 10-year risk of cardiovascular disease: the SCAPIS pilot cohort. Sci Rep 12, 8203.CrossRefGoogle ScholarPubMed
Leung, GKW, Huggins, CE & Bonham, MP (2019) Effect of meal timing on postprandial glucose responses to a low glycemic index meal: a crossover trial in healthy volunteers. Clin Nutr 38, 465471.CrossRefGoogle Scholar
Kelly, KP, McGuinness, OP, Buchowski, M, et al. (2020) Eating breakfast and avoiding late-evening snacking sustains lipid oxidation. PLoS Biol 18, e3000622.CrossRefGoogle ScholarPubMed