Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-21T05:59:55.323Z Has data issue: false hasContentIssue false

From phenotype to genotype: major genes in chickens

Published online by Cambridge University Press:  18 September 2007

M. Tixier-Boichard
Affiliation:
Institut National de la Recherche Agronomique, Département de Génétique Animale, Laboratoire de Génétique Factorielle, 78352 Jouy-en-Josas Cedex, France, e-mail: boichard@diamant.jouy.inra.fr
Get access

Abstract

The relationships between phenotype and genotype were first described by Mendelian genetics in the case of genes with a major phenotypic effect. The remarkable improvement of biochemical and molecular tools has now made it possible to identify the molecular nature of major genes, and to understand better their mode of action. From a functional point of view, mutations of a given gene can be classified into three groups: loss of function, interference and dominant negative action, and gain of function. From a structural point of view, a large diversity of molecular polymorphisms can be found, the consequences of which depend rather on their position than on their nature. Genetic abnormalities or mutations with obvious morphological effects provide the most didactic examples to understand the genotype-phenotype relationships. The example of sex-linked dwarfism in chicken is described in detail and the present state of knowledge on the molecular identification of major genes in the chicken is reviewed. Finally, a general discussion, based upon examples taken from human genetics and mouse genetics, draws lessons from the study of major genes in order to approach the study of complex phenotypes or genotype x environment interactions.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, S.K., Cogburn, L.A. and Burnside, J. (1994) Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain. J. Endocrinol. 142:427434.CrossRefGoogle Scholar
Airey, J.A., Deerinck, T.J., Ellisman, M.H., Houenou, L.J., Ivanenko, A., Kenyon, J.L., McKemy, D.D., Sutko, J.L. (1993) Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal ryanodine receptor and exhibit a partial mutant phenotype. Develop. Dynam. 197: 189202.CrossRefGoogle ScholarPubMed
Bacon, L.D., Smith, E.J., Crittenden, L.B. and Havenstein, G.B. (1988) Association of the slow-feathering (K) and an endogenous viral (ev21) gene of the Z chromosome of chickens. Poultry Sci. 67: 191197.CrossRefGoogle Scholar
Bartlett, J.R., Jones, C.P. and Smith, E.J. (1996) Linkage analysis of endogenous viral element 1, Blue eggshell and Pea comb loci in chickens. J. Heredity 87: 6770.CrossRefGoogle Scholar
Bitgood, J.J. (1985) Locating Pea Comb and Blue Egg in relation to the centromere of chromosome 1 in the chicken. Poultry Sci. 64: 14111414.CrossRefGoogle Scholar
Bitgood, J.J. and Somes, R.G. Jr. (1993) Gene map of the chicken (Gallus gallus). In: ‘Genetic Maps’ 6th edition, O'Brien, S. (Ed.), 4.3334.342. Cold Spring Harbor Laboratory Press.Google Scholar
Bitgood, J.J., Shoffner, R.N., Otis, J.S. and Briles, W.E. (1980) Mapping of the genes for pea comb, blue egg, barring, silver, and blood groups A, E, H and P in the domestic fowl. Poultry Sci. 59: 16861693.CrossRefGoogle Scholar
Bujo, H., Yamamoto, T., Hayashi, K., Hermann, M., Nimpf, J. and Schneider, W.J. (1995) Mutant oocyte low density lipoprotein receptor gene family member causes atherosclerosis and female sterility. Proc. Natl. Acad. Sci. USA 92: 99059909.CrossRefGoogle ScholarPubMed
Burnside, J., Liou, S.S and Cogburn, L.A. (1991) Molecular cloning of the chicken growth hormone receptor complementary deoxyribonucleic acid: mutation of the gene in sex-linked dwarf chickens. Endocrinol. 128: 31833192.CrossRefGoogle ScholarPubMed
Carefoot, W.C. (1990) Test for linkage between the eumelanin dilution blue, the extended black allele at the E-locus and the linked pea comb and eumelanin extension genes in the domestic fowl. Brit. Poultry Sci. 31: 465472.CrossRefGoogle ScholarPubMed
Decuypere, E., Huybrechts, L.M., Kühn, E.R., Tixier-Boichard, M. and Mérat, P. (1991) Physiological alterations associated with the chicken sex-linked dwarfing gene. Crit. Rev. Poultry Biol. 3: 191221.Google Scholar
Doetschman, T. (1999) Interpretation of phenotype in genetically engineered mice. Lab. Anim. Sci. 49: 137143.Google ScholarPubMed
Dunn, I.C., Sharp, P.J., Paton, I.R. and Burt, D.W. (1999) Mapping of the gene responsible for henny feathering (CYP19/aromatase) to chicken chromosome E29C09W09. In: Poultry Genet. Symp.Preisinger, R (ed) Mariensee Oct. 6–8 1999, 114.Google Scholar
Duriez, B., Sobrier, M-L., Duquesnoy, P., Tixier-Boichard, M., Decuypere, E., Coquerelle, G., Zeman, M., Goossens, M. and Amselem, S. (1993) A naturally occurring growth hormone receptor mutation: in vivo and in vitro evidence for the functional importance of the WS motif common to all members of the cytokine receptor superfamily. Mol. Endocrinol. 7: 806814.Google ScholarPubMed
Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V.K., Weiler, J.E., O'brien, P.J. and Maclennan, D.H. (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448451.CrossRefGoogle ScholarPubMed
Groenen, M.A., Cheng, H.H., Bumstead, N., Benkel, B.F., Briles, W.E., Burke, T., Burt, D.W., Crittenden, L.B., Dodgson, J., Hillel, J., Lamont, S., Ponce De Leon, F.A., Soller, M., Takahashi, H. and Vignal, A. (2000) A consensus linkage map of the chicken genome. Genome Res., 10: 137147.Google ScholarPubMed
Huang, N., Cogburn, L.A., Agarwal, S.K., Marks, H.L. and Burnside, J. (1993) Overexpression of a truncated growth hormone receptor in the sex-linked dwarf chicken: evidence for a splice mutation. Mol. Endocrinol., 7: 13911398.Google ScholarPubMed
Hutt, F.B. (1959) Sex-linked dwarfism in the fowl. J. Hered., 50: 209221.CrossRefGoogle Scholar
Iraqi, F. and Smith, E.J. (1995) Organization of the sex-linked late-feathering haplotype in chickens. Anim. Genet. 26: 141146.CrossRefGoogle ScholarPubMed
Joerg, H., Fries, H.R., Meijerink, E. and Stranzinger, G.F. (1996) Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm. Genome 7: 317318.CrossRefGoogle ScholarPubMed
Kijas, J.M.H., Wales, R., Tornsten, A., Chardon, P., Moller, M. and Andersson, L. (1998) Melanocortin receptor 1 (MCIR) mutations and coat color in pigs. Genetics 150:11771185.CrossRefGoogle Scholar
Levin, I., Crittenden, L.B. and Dodgson, J.B. (1993) Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics, 16: 224230.CrossRefGoogle ScholarPubMed
Levin, I. and Smith, E.J. (1990) Molecular analysis of endogenous virus ev21 slow-feathering complex of chickens. 1. Cloning of proviral-cell junction fragment and unoccupied integrate site. Poultry Sci. 69: 20172026.Google ScholarPubMed
Li, H., Schwartz, N.B. and Vertel, B.M. (1993) cDNA cloning of chick cartilage chondroitin sulfate (aggrecan) core protein and identification of a stop codon in the aggrecan gene associated with the chondrodystrophy, nanomelia. J. Biol. Chem. 268: 2350423511.CrossRefGoogle ScholarPubMed
Maclachlan, I., Nimpf, J., White, H.B. and Schneider, W.J. (1993) Riboflavinuria in the rd chicken. 5' splice site mutation in the gene for riboflavin-binding protein. J. Biol. Chem., 268: 2322223226.CrossRefGoogle ScholarPubMed
Muller, U. (1999) Ten years of gene targeting: targeted mouse mutants from vector design to phenotype analysis. Mechanisms Develop. 82: 321.CrossRefGoogle ScholarPubMed
Nakatsu, Y., Tyndale, R.F., Delorey, T.M., Durham-Pierre, D., Gardner, J.M., McDanel, H.J, Nguyen, Q., Wagstaff, J., Lalande, M., Sikela, J.M., Olsen, R.W., Tobin, A.J. and Brilliant, M.H. (1993) A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature, 364: 448450.CrossRefGoogle Scholar
Oetting, W.S., Churilla, A.M., Yamamoto, Y. and Brumbaugh, J.A. (1985) C pigment locus mutants of the fowl produce enzymatically inactive tyrosinase-like molecules. J. Exp. Zool., 235: 237245.CrossRefGoogle ScholarPubMed
Pitel, F., Bergé, R., Coquerelle, G., Crooijmans, R.P.M.A., Groenen, M.A.M., Vignal, A. and Tixier-Boichard, M. (2000) Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genet. Sel. Evol., 32: 7386.CrossRefGoogle ScholarPubMed
Poernama, F., Schreyer, S.A., Bitgood, J.J, Cook, M.E. and Attie, A.D. (1990) Spontaneous high density lipoprotein deficiency syndrome associated with a Z-linked mutation in chickens. J. Lipid Res. 31: 955963.CrossRefGoogle ScholarPubMed
Primorac, D., Stover, M.L., Clark, S.H. and Rowe, D.W. (1994) Molecular basis of nanomelia, a heritable chondrodystrophy of chicken. Murrix Biol. 14: 297305.Google ScholarPubMed
Ramanathan, L., Guyer, R.B., Buss, E.G., Clagett, C.O. and Listwak, S. (1980) Avian riboflavinuria-XI. Immunological quantitation of cross-reacting liver proteins from normal, heterozygous and mutant hens. Biochem. Genet. 18: 11311148.CrossRefGoogle ScholarPubMed
Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Roselli-Rehfuss, L., Baack, E., Mountjoy, K.G and Cone, R.D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell, 72:827834.Google ScholarPubMed
Ruyter-Spira, C.P., Gu, Z.L., Van Der Poel, J.J. and Groenen, M.A.M. (1997) Bulked segregant analysis using microsatellites: mapping of the Dominant White locus in the chicken. Poultry Sci., 76: 386391.CrossRefGoogle ScholarPubMed
Ruyter-Spira, C.P., De Groof, A.J.C., Van Der Poel, J.J., Herbergs, J., Masabanda, J., Fries, F. and Groenen, M.A.M. (1998) The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken, J. Hered. 89: 295300.CrossRefGoogle ScholarPubMed
Sazanov, A., Masabanda, J., Ewald, D., Takeuchi, S., Tixier-Boichard, M., Buitkamp, J. and Fries, R. (1998) Evolutionarily conserved telomeric location of BBC1 and MC1R on a microchromosome questions the identity of MC1R and a pigmentation locus on chromosome 1 in chicken. Chromos. Res. 6: 651654.CrossRefGoogle Scholar
Siracusa, L.D. (1994) The agouti gene: turned on to yellow. Trends Genet. 10: 423428.CrossRefGoogle Scholar
Somes, R.G. Jr. (1984) International registry of poultry genetic stocks. Bulletin 469, the University of Connecticut, Storrs, 95 p.Google Scholar
Somes, R.G. Jr, George, F.W., Baron, J., Noble, J.F. and Wilson, J.D. (1984) Inheritance of the henny-feathering trait of the Sebright bantam chickens. J. Hered. 75: 99102.CrossRefGoogle Scholar
Suzuki, T., Kansaku, N., Kurosaki, T., Shimada, K., Zadworny, D., Koide, M., Mano, T. and Namikawa, T. (1999 a) Comparative FISH mapping on Z chromosomes of chicken and Japanese quail. Cytogenet. Cell Genet. 87: 2226.CrossRefGoogle Scholar
Suzuki, T., Kurosaki, T., Shimada, K., Kansaku, N., Kuhnlein, U., Zadworny, D., Agata, K., Hashimoto, A., Koide, M., Koike, M., Takata, M., Kuroiwa, A., Namikawa, T. and Matsuda, Y. (1999b) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenet Cell Genet 87: 3240.CrossRefGoogle ScholarPubMed
Takeuchi, S., Suzuki, H., Yabuuchi, M. and Takahashi, S. (1996) A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim. Biophys. Acta, 1308: 164168.CrossRefGoogle ScholarPubMed
Tixier-Boichard, M., Huybrechts, L.M., Kühn, E., Decuypere, E., Charrier, J. and Mongin, P. (1989) Physiological studies on the sex-linked dwarfism of the fowl: a review on the search for the gene's primary effect. Genet. Sel. Evol., 21: 217234.CrossRefGoogle Scholar
Tobita-Teramoto, T., Jang, G.Y., Kino, K., Salter, D.W., Brumbaugh, J. and Akiyama, T. (2000) Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-GACTGG817) at a copper-binding site of the tyrosinase gene. Poultry Sci. 78: 4650.CrossRefGoogle Scholar
Yen, P.M. and Chin, W.W. (1994) Molecular mechanisms of dominant negative activity by nuclear hormone receptors. Mol. Endocrinol. 8: 14501454.Google ScholarPubMed
Zartmann, D.L. (1973) Location of the pea comb gene. Poultry Sci., 52: 14551462.Google Scholar