Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:22:50.471Z Has data issue: false hasContentIssue false

Campylobacter and Salmonella in poultry and poultry products: hows and whys of molecular typing

Published online by Cambridge University Press:  18 September 2007

G. Manfreda*
Affiliation:
Department of Food Science, Alma Mater Studiorum – University of Bologna, Via S. Giacomo 9, 40126 Bologna, Italy
A. De Cesare
Affiliation:
Department of Food Science, Alma Mater Studiorum – University of Bologna, Via S. Giacomo 9, 40126 Bologna, Italy
*
*Corresponding author: gmanfreda@disa.unibo.it
Get access

Abstract

Molecular typing can help to manage and contain food-borne pathogen contamination in poultry and poultry products by providing a means to accurately evaluate sources and transmission routes of specific strains. Moreover, it provides an opportunity to identify the virulence determinant genes characterising the poultry strains that may cause human diseases.

This paper summarises the main applications of genotyping methods in the epidemiological investigations of Campylobacter and Salmonella, in order to identify clonally related and sporadic strains as well as to keep track of the geographical spread and prevalence shifts of epidemic and endemic clones.

Moreover, examples of applications of comparative genomics, by whole genome sequencing and microarray, are given in order to demonstrate how to investigate the difference in virulence determinant genes among Salmonella poultry strains and to distinguish different genotypes among Campylobacter strains. Although virulence determinants have been defined for Escherichia coli and Salmonella enterica, despite use of molecular typing and virulence assays for many years, virulence determinant genes have not been identified for Campylobacter. Putative virulence genes, such as cdt, have been discovered, but for the majority a clear role in disease causation has not been established. It is unlikely that comparative molecular typing using the methods available to a single laboratory will elucidate the virulence mechanisms and associated determinants. It is also, therefore, not yet possible to investigate differences in virulence gene complement for Campylobacter by genome sequencing and microarray in the same way as has been described for E. coli and S. enterica.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, H.J.M., Van Lith, L.A.J.T. and Keijer, J. (1998) High-resolution of Salmonella strains by AFLP- fingerprinting. Letters in Applied Microbiology 26: 131135.CrossRefGoogle ScholarPubMed
Bird, M., Whichard, J., Ribot, E., Stevenson, J. and Barrett, T. (2002) Assessing the Emergence of A Multi-Drug Resistant Salmonella Serotype Newport Using PFGE and Plasmid Profiling (1996–2000). The 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy.San Diego, California2002.Google Scholar
Chaldfield, M., Skov, M., Christensen, J., Madsen, M. and Bisgaard, M. (2001) An epidemiological study of Salmonella enterica serovar 4, 12:b in broiler chickens in Denmark. Veterinary Microbiology 82: 233247.CrossRefGoogle Scholar
Chan, K., Baker, S., Kim, C.D., Detweiler, C.S., Dougan, G. and Falkow, S. (2003) Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of a S. enterica serovar Typhimurium DNA microarray. Journal of Bacteriology 185: 553563.CrossRefGoogle Scholar
Cimons, M. (2000) Rapid food-borne pathogens ID system is making difference. ASM News 66: 617619.Google Scholar
Clark, C.G., Kruk, T.M.A.C., Bryden, L., Hirvi, Y., Ahmed, R. and Rodgers, F.G. (2003) Subtyping of Salmonella enterica serotype Enteritidis strains by manual and automated PstI-SphI ribotyping. Journal of Clinical Microbiology 41: 2733.CrossRefGoogle ScholarPubMed
De Cesare, A., Manfreda, G., Dambaugh, T.R., Guerzoni, M.E. and Franchini, A. (2001) Automated ribotyping and random amplified polymorphic DNA analysis for molecular typing of Salmonella enteritidis and Salmonella typhimurium strains isolated in Italy. Journal of Applied Microbiology 91: 780785.CrossRefGoogle ScholarPubMed
Duim, B., Wassenaar, T., Rigter, A. and Wagenaar, J. (1999) High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Applied and Environmental Microbiology 65: 23692375.CrossRefGoogle ScholarPubMed
Edwards, R.A., Matlock, B.C., Heffernan, B.J. and Maloy, S.R. (2001) Genomic analysis and growth-phase-dependent regulation of the SEF14 fimbriae of Salmonella enterica serovar Enteritidis. Microbiology 147: 27052715.CrossRefGoogle ScholarPubMed
Edwards, R.A., Olsen, G.J. and Maloy, S.R. (2002) Comparative genomics of closely related salmonellae TRENDS in Microbiology 10: 9499.CrossRefGoogle ScholarPubMed
Edwards, R.A., Schifferli, D.M. and Maloy, S.R. (2000) A role for Salmonella fimbriae in intraperitoneal infections. Proceedings of the National Academy of Sciences of the United States of America 97: 12581262.CrossRefGoogle ScholarPubMed
Farber, J.M. (1996) An introduction to the hows and whys of molecular typing. Journal of Food Protection 59: 10911101.CrossRefGoogle Scholar
Fitzgerald, C., Stanley, K., Andrew, S. and Jones, K. (2001) Use of pulsed-field gel electrophoresis and flagellin gene typing in identifying clonal groups of Campylobacter jejuni and Campylobacter coli in farm and clinical environments. Applied and Environmental Microbiology 67: 14291436.CrossRefGoogle ScholarPubMed
Gerner-Smidt, p. (2004) Update on PulseNet Europe. 8th Annual PulseNet Update MeetingApril 27–302004 San Diego, CAGoogle Scholar
Gilbert, M., Karwaski, M.F., Bernatchez, S., Young, Martin N., Taboada, E., Michniewicz, J., Cunningham, A.M. and Wakarchuk, W.W. (2002) The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni. Biosynthesis of siaylated ganglioside mimics in the core oligosaccharide. Journal of Biological Chemistry 277: 327337.CrossRefGoogle Scholar
Gilbert, M., Godschalk, P.C, Karwaski, M.F., Ang, C.W., Belkum, A., Li, J., Wakarchuk, W.W. and Endtz, H.P. (2004) Evidence for acquisition of the lipooligosaccharide biosynthesis locus in Campylobacter jejuni GB11, a strain isolated from a patient with Guillain-Barre syndrome, by horizontal exchange. Infection and Immunity 72 (2) 11621165.CrossRefGoogle ScholarPubMed
Guerry, P., Szymanski, C.M., Prendergast, M.M., Hickey, T.E., Ewing, C.P., Pattarini, D.L. and Moran, A.P. (2002) Phase variation of Campylobacter jejuni 81–176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infection and Immunity 70: 787793.CrossRefGoogle ScholarPubMed
Guevremont, E., Higgins, R., Quessy, S. (2004) Characterisation of Campylobacter isolates recovered from clinically healthy pigs and from sporadic cases of campylobacteriosis in humans. Journal of Food Protection 67: 228234.CrossRefGoogle ScholarPubMed
Harrington, C.S., Moran, L., Ridley, A.M., Newell, D.G., Madden, R.H. (2003) Interlaboratory evaluation of three flagellin PCR/RFLP methods for typing Campylobacter jejuni and C. coli: the CAMPYNET experience. Journal of Applied Microbiology 95: 1321–33.CrossRefGoogle Scholar
Jones, M.A., Marston, K.L., Woodall, C.A., Maskell, D.J., Linton, D., Karlyshev, A.V., Dorrell, N., Wren, B.W. and Barrow, P.A. (2004) Adaptation of Campylobacter jejuni NCTC 11168 to high level colonisation of the avian gastrointestinal tract. Infection and immunity 72: 37693776.CrossRefGoogle Scholar
Lawson, A.J., Desai, M., O'Brien, J., Davies, R.H., Ward, L.R. and Threlfall, E.J. (2004) Molecular characterisation of an outbreak strain of multiresistant Salmonella enterica serovar Typhimurium DT104 in the UK. Clinical Microbiology Infection 10: 143147.CrossRefGoogle ScholarPubMed
Liebana, E., Garcia-Migura, L., Breslin, M.F., Davies, R.H. and Woodward, M.J. (2001) Diversity of strains of Salmonella enterica serotype Enteritidis from English poultry farms assessed by multiple genetic fingerprinting. Journal of Clinical Microbiology 39: 154161.CrossRefGoogle ScholarPubMed
Lindqvist, N., Heinikainen, S., Siitonen, A. and Pelkonen, S. (2004) Molecular characterization of Salmonella enterica subsp. enterica serovar Typhimurium DT1 isolates. Epidemiology and Infection 132 (2): 263–72.CrossRefGoogle ScholarPubMed
Manfreda, G., De Cesare, A., Bondioli, V. and Franchini, A. (2003) Ribotyping characterisation of Campylobacter isolates randomly collected from different sources in Italy. Diagnostic Microbiology and Infectious Disease 47: 385392.CrossRefGoogle ScholarPubMed
Manning, G., Dowson, C.G., Bagnall, M.C., Ahmed, H., West, M. and Newelli, D.G. (2003) Multilocus Sequence Typing for Comparison of Veterinary and Human Isolates of Campylobacter jejuni. Applied and Environmental Microbiology 69: 63706379.CrossRefGoogle ScholarPubMed
McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R. and Wilson, R.K. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852856.CrossRefGoogle ScholarPubMed
Mead, G.C. (2004) Current trends in the microbiological safety of poultry meat. World's Poultry Science Journal 60: 112118.CrossRefGoogle Scholar
Murakami, K., Horikawa, K. and Otsuki, K. (1999) Epidemiological analysis of Salmonella enteritidis from human outbreaks by pulsed filed gel electrophoresis. Journal of Veterinary Medical Science 61: 439442.CrossRefGoogle Scholar
Nadeau, E., Messier, S. and Quessy, S. (2002) Prevalence and comparison of genetic profiles of Campylobacter strains isolated from poultry and sporadic cases of campylobacteriosis in humans. Journal of Food Protection 65: 7378.CrossRefGoogle ScholarPubMed
Nelson, K.E., Paulsen, I.T. and Fraser, C.M. (2001) Microbial genome sequencing: a window into evolution and physiology. ASM News 67: 310317.Google Scholar
Ocham, H., Lawrence, J.G. and Groisma, E.A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299304.Google Scholar
Olsen, J.E., Skow, M.N., Angen, O., Threlfall, E.J. and Bisgaard, M. (1997) Genomic relationships between selected phage types of Salmonella enterica subsp. enterica serotype typhimurium defined by ribotyping, IS200 typing and PFGE. Microbiology 143: 14711479.CrossRefGoogle ScholarPubMed
Parkill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., Churcher, C., Mungall, K.L., Bentley, S.D., Holden, M.T., Sebaihia, M., Baker, S., Basham, D., Brooks, K., Chillingworth, T., Connerton, P., Cronin, A., Davis, P., Davies, R.M., Dowd, L., White, N., Farrar, J., Feltwell, T., Hamlin, N., Haque, A., Hien, T.T., Holroyd, S., Jagels, K., Krogh, A., Larsen, T.S., Leather, S., Moule, S., O'Gaora, P., Parry, C., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S. and Barrell, B.G. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848852.CrossRefGoogle Scholar
Parkill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M., Van Vliet, A.H., Whitehead, S. and Barrell, B.G. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hyper-variable sequences. Nature 403: 665668.CrossRefGoogle Scholar
Pearson, B.M., Pin, C., Wright, J., I'Anson, K., Humprey, T. and Wells, J.M. (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Letters 554: 224230.CrossRefGoogle ScholarPubMed
Pfaller, M.A., Wendt, C., Hollis, R., Wenzel, R., Fritschel, S.J., Neubauer, J. and Herwaldt, L. (1996) Comparative evaluation of automated ribotyping system versus PFGE for epidemiological typing of clinical isolates of Escherichia coli and Pseudomonas aeruginosa from patients with recurrent gram negative bacteremia. Diagnostic Microbiology and Infectious Disease 25: 18.CrossRefGoogle ScholarPubMed
Punia, P., Hampton, M.D., Ridley, A.M., Ward, L.R., Rowe, B. and Threlfall, E.J. (1998) Pulsed-field electrophoretic fibngerprinting of Salmonella indiana and its epidemiologic applicability. Journal of Applied Microbiology 84: 103107.CrossRefGoogle ScholarPubMed
Ribot, E.M., Fitzgerald, C., Kubota, K., Swaminathan, B. and Barrett, T.J. (2001) Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. Journal Clinical Microbiology 39: 1889–94.CrossRefGoogle ScholarPubMed
Ridley, A.M., Threlfall, E.J. and Rowe, B. (1998) Genotypic characterization of Salmonella enteritidis phage types by plasmid analysis, ribotyping, and pulsed-field gel electrophoresis. Journal Clinical Microbiology 36: 23142321.CrossRefGoogle ScholarPubMed
Sassetti, C. and Rubin, E.J. (2002) Genomic analysis of microbial virulence. Current Opinion Microbiolgy 5: 2732.CrossRefGoogle ScholarPubMed
Savelkoul, P.H.M., Aarts, H.J.M., De Haas, J., Dijkshoorn, L., Duim, B., Otsen, M., Rademaker, J.L.W., Schouls, L. and Lenstra, J.A. (1999) Amplified-Fragment Length Polymorphism Analysis: the State of an Art. Journal of Clinical Microbiology 37: 30833091.CrossRefGoogle ScholarPubMed
Scholnik, G.K. (2002) Functional and comparative genomics of pathogenic bacteria. Current Opinion in Microbiolgy 5: 2026.CrossRefGoogle Scholar
Schouls, L.M., Reulen, S., Duim, B., Wagenaar, J.A., Willems, R.J., Dingle, K.E., Colles, F.M. and Van Embden, J.D. (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range and recombinations. Journal of Clinical Microbiology 41: 1526.CrossRefGoogle Scholar
Selander, R.K., Beltran, P. and Smith, N.H. (1990) Evolutionary genetic relationship of clones of Salmonella serovars causing human typhoid and other enteric fevers. Infection and Immunity 58: 22622275.CrossRefGoogle ScholarPubMed
Stanley, J. and Saunders, N. (1996) DNA insertion sequences and the molecular epidemiology of Salmonella and Mycobacterium. Journal Medical Microbiology 45: 236251.CrossRefGoogle ScholarPubMed
Struelens, M.J., De Gheldre, Y. and Deplano, A. (1998) Comparative and libray epidemiological typing systems: outbreak investigations versus surveillance systems. Infection Control and Hospital Epidemiology 19: 565569.CrossRefGoogle Scholar
Swaminathan, B., Barrett, T.J., Hunter, S.B. and Tauxe, R.V. (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerging Infectious Disease 7: 382–9.CrossRefGoogle Scholar
Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H. and Swaminathan, B. (1995) Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology 33: 22332239.CrossRefGoogle ScholarPubMed
Terletski, V., Geovana Brenner, M. and Schwarz, S. (2004) Subtracted restriction fingerprinting – a new technique using magnetic capture of tagged restriction fragments. FEMS Immunology and Medical Microbiology 41: 18.CrossRefGoogle ScholarPubMed
Townsend, S.M., Kramer, N.E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Maloy, S., Parkhill, J., Dougan, G. and Baumler, A.J. (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infection and Immunity 69: 28942901.CrossRefGoogle ScholarPubMed
Van Belkum, A., Van Den Braak, N., Godschalk, P., Ang, W., Jacobs, B., Gilbert, M., Wakarchuk, W., Verbrugh, H. and Endtz, H. (2001) A Campylobacter jejuni gene associated with immune-mediated neuropathy. Nature Medicine 7: 752753.CrossRefGoogle ScholarPubMed
Wassenar, T.M. and Newell, D.G. (2000) Genotyping of Campylobacter spp. Applied and Environmental Microbiology 66: 19.CrossRefGoogle Scholar
Weigel, R.M., Qiao, B., Teferedegne, B., Suh, D.K., Barber, D.A., Isaacson, R.E. and White, B.A. (2004) Comparison of pulsed field gel electrophoresis and repetitive sequence polymerase chain reaction as genotyping methods for detection of genetic diversity and inferring transmission of Salmonella. Veterinary Microbiology 100: 205217.CrossRefGoogle ScholarPubMed
Zhao, S., Qaiyumi, S., Friedman, S., Singh, R., Foley, S.L., White, D.G., McDermott, P.F., Donkar, T., Bolin, C., Munro, S., Baron, E.J. and Walker, R.D. (2003) Characterization of Salmonella enterica serotype newport isolated from humans and food animals. Journal Clinical Microbiology 41 (12): 53665371.CrossRefGoogle ScholarPubMed