Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T21:12:30.842Z Has data issue: false hasContentIssue false

Weed Management Strategies to Reduce Herbicide Use in Zero-Till Rice–Wheat Cropping Systems of the Indo-Gangetic Plains

Published online by Cambridge University Press:  20 January 2017

Virender Kumar*
Affiliation:
International Maize and Wheat Improvement Center (CIMMYT)–India office, NASC Complex, Ground Floor, Pusa, New Delhi 110012, India
Samar Singh
Affiliation:
CCS Haryana Agricultural University, Regional Research Station, Uchani, Karnal 132001, India
Rajender S. Chhokar
Affiliation:
Directorate of Wheat Research, Karnal 132001, India
Ram K. Malik
Affiliation:
International Maize and Wheat Improvement Center (CIMMYT)–India office, NASC Complex, Ground Floor, Pusa, New Delhi 110012, India
Daniel C. Brainard
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325
Jagdish K. Ladha
Affiliation:
International Rice Research Institute (IRRI)–India office, NASC Complex, Pusa, New Delhi 110012, India
*
Corresponding author's E-mail: virender.kumar@cgiar.org

Abstract

In the rice–wheat (RW) systems of the Indo-Gangetic Plains of South Asia, conservation tillage practices, including zero-tillage (ZT), are being promoted to address emerging problems such as (1) shortages of labor and water, (2) declining factor productivity, (3) deterioration of soil health, and (4) climate change. Despite multiple benefits of ZT, weed control remains a major challenge to adoption, resulting in more dependence on herbicides for weed control. Alternative management strategies are needed to reduce dependence on herbicides and minimize risks associated with their overuse, including evolution of herbicide resistance. The objectives of this review are to (1) highlight and synthesize research efforts in nonchemical weed management in ZT RW systems and (2) identify future weed ecology and management research needs to facilitate successful adoption of these systems. In ZT RW systems, crop residue can play a central role in suppressing weeds through mulch effects on emergence and seed predation. In ZT rice, wheat residue mulch (5 t ha−1) reduced weed density by 22 to 76% and promoted predation of RW weeds, including littleseed canarygrass and barnyardgrass seeds. For ZT wheat, rice residue mulch (6 to 10 t ha−1) in combination with early sowing reduced emergence of littleseed canarygrass by over 80%. Other promising nonchemical approaches that can be useful in suppressing weeds in ZT RW systems include use of certified seeds, weed-competitive cultivars, stale seedbed practices, living mulches (e.g., sesbania coculture), and water and nutrient management practices that shift weed–crop competition in favor of the crop. However, more research on emergence characteristics and mulching effects of different crop residues on key weeds under ZT, cover cropping, and breeding crops for weed suppression will strengthen nonchemical weed management programs. Efforts are needed to integrate multiple tactics and to evaluate long-term effects of nonchemical weed management practices on RW cropping system sustainability.

En sistemas de arroz-trigo (RW) de las planicies Indo-Gangéticas del sur de Asia, se está promoviendo el uso de prácticas de labranza de conservación, incluyendo labranza cero (ZT), para solucionar problemas emergentes tales como (1) escasez de agua y mano de obra, (2) reducción de productividad, (3) deterioro en la salud del suelo, y (4) cambio climático. A pesar de los múltiples beneficios de ZT, el control de malezas continúa siendo uno de los mayores retos para la adopción de esta tecnología, lo que resulta en una mayor dependencia en herbicidas para el control de malezas. Se necesitan estrategias alternativas de manejo para reducir la dependencia en herbicidas y minimizar los riesgos asociados a su sobreuso, incluyendo la evolución de resistencia a herbicidas. Los objetivos de esta revisión son (1) resumir y resaltar los esfuerzos de investigación en el manejo no-químico de malezas en sistemas ZT RW e (2) identificar las necesidades futuras de investigación sobre ecología y manejo de malezas para facilitar el éxito en la adopción de estos sistemas. En sistemas ZT RW, el residuo del cultivo puede jugar un rol central en la supresión de malezas mediante efectos de cobertura sobre la emergencia y la depredación de semillas. En arroz ZT, la cobertura con residuos de trigo (5 t ha−1) redujo la densidad de malezas 22 a 76% y promovió la depredación de malezas de RW, incluyendo semillas de Phalaris minor y Echinochloa crus-galli. Para trigo RW, la cobertura con residuos de trigo (6 a 10 t ha−1) en combinación con siembra temprana redujo la emergencia de P. minor en más de 80%. Otras estrategias no-químicas promisorias que pueden ser útiles para suprimir malezas en sistemas ZT RW incluyen el uso de semilla certificada, el uso de cultivares competitivos contra las malezas, y prácticas de siembra retrasada, coberturas vivas (e.g. Sesbania rostrata como co-cultivo), prácticas de manejo de agua y nutrientes que cambien la relación de competencia maleza-cultivo en favor del cultivo. Sin embargo, más investigación sobre características de emergencia y efectos de diferentes residuos de cultivos como coberturas sobre especies clave en ZT, coberturas vivas y mejoramiento genético de los cultivos para supresión de malezas fortalecerá los programas de manejo no-químico de malezas. Se necesitan esfuerzos para integrar múltiples tácticas y para evaluar los efectos en el largo plazo de las prácticas no-químicas de manejo de malezas sobre la sostenibilidad de sistemas de cultivos RW.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akobundu, I. O. and Ahissou, A. 1985. Effect of interrow spacing and weeding frequency on the performance of selected rice cultivars on hydromorphic soils of West Africa. Crop Prot. 4 :7176.Google Scholar
Anonymous. 2001. Annual Report of NATP Project on Conservation Tillage in Rice–Wheat Cropping System (2000–2001). Kaul, India : CCS Haryana Agricultural University Rice Research Station. 24 p.Google Scholar
Anwar, P., Juraimi, A. S., Puteh, A., Selamat, A., Man, A., and Hakim, A. 2011. Seeding method and rate influence on weed suppression in aerobic rice. Afr. J. Biotechnol. 10:15, 259–15,271.Google Scholar
Balyan, R. S. and Malik, R. K. 1989. Influence of nitrogen on competition of wild canarygrass (Phalaris minor Ritz) in wheat (Triticum aestivum L.). Pestology 13 :56.Google Scholar
Balyan, R. S., Malik, R. K., Panwar, R. S., and Singh, S. 1991. Competitive ability of winter wheat cultivars with wild oat (Avena ludoviciana). Weed Sci. 39 :154158.Google Scholar
Benvenuti, S., Dinelli, G., and Bonetti, A. 2004. Germination ecology of Leptochloa chinensis: a new weed in the Italian rice agro-environment. Weed Res. 44 :8796.Google Scholar
Brust, G. E. and House, G. J. 1988. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am. J. Altern. Agric. 3 :1925.Google Scholar
[CAST] Council for Agricultural Science and Technology. 2012. Herbicide-Resistant Weeds Threaten Soil Conservation Gains: Finding a Balance for Soil and Farm Sustainability. Ames, IA : CAST Issue Paper 49. 16 p.Google Scholar
Castin, E. M. and Moody, K. 1989. Effect of different seeding rates, moisture regimes, and weed control treatments on weed growth and yield of wet-seeded rice. Pages 337343 in Proceedings of the 12th Asian-Pacific Weed Science Society Conference. Seoul, Korea : Asia Pacific Weed Science Society.Google Scholar
Chahal, P. S., Brar, H. S., and Walia, U. S. 2003. Management of Phalaris minor in wheat through integrated approach. Ind. J. Weed Sci. 35 :15.Google Scholar
Challaiah, O. C., Burnside, G. A. Wicks, and Johnson, V. A. 1986. Competition between winter wheat (Triticum aestivum) cultivars and downy brome (Bromus tectorum). Weed Sci. 34 :689693.Google Scholar
Chauhan, B. S. 2011. Crowfootgrass (Dactyloctenium aegyptium) germination and response to herbicides in the Philippines. Weed Sci. 59 :512516.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26 :113.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2008a. Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Sci. 56 :820825.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2008b. Influence of environmental factors on seed germination and seedling emergence of eclipta (Eclipta prostrata) in a tropical environment. Weed Sci. 56 :383388.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009a. Ecological studies on Cyperus difformis, C. iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice. Ann. Appl. Biol. 155 :103112.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009b. Seed germination ecology of junglerice (Echinochloa colona): a major weed of rice. Weed Sci. 57 :235240.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009c. Influence of tillage systems on weed seedling emergence pattern in rainfed rice. Soil Till. Res. 106 :1521.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011a. Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Prot. 30 :13851391.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011b. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121 :226231.Google Scholar
Chauhan, B. S., Migo, T., Westerman, P. R., and Johnson, D. E. 2010. Postdispersal predation of weed seeds in rice fields. Weed Res. 50 :553560.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121 :105115.Google Scholar
Chee-Sanford, J. C., Williams, M. M. II, Davis, A. S., and Sims, G. K. 2006. Do microorganisms influence seed-bank dynamics? Weed Sci. 54 :575587.Google Scholar
Chhokar, R. S. 1998. Biology and Control of Isoproturon Resistant Littleseed Canarygrass (Phalaris minor). Ph.D dissertation. Hisar, India : C.C.S Haryana Agricultural University.Google Scholar
Chhokar, R. S. 2002. Major Weeds of Wheat and Their Management. Karnal, India : Directorate of Wheat Research, Indian Council of Agricultural Research Issue 13. 16 p.Google Scholar
Chhokar, R. S. and Malik, R. K. 2002. Isoproturon-resistant littleseed canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol. 16 :116123.Google Scholar
Chhokar, R. S., Malik, R. K., and Balyan, R. S. 1999. Effect of moisture stress and seeding depth on germination of littleseed canarygrass (Phalaris minor Retz.). Indian J. Weed Sci. 31 :7879.Google Scholar
Chhokar, R. S. and Sharma, R. K. 2008. Multiple herbicide resistance in littleseed canarygrass (Phalaris minor): a threat to wheat production in India. Weed Biol. Manage. 8 :112123.Google Scholar
Chhokar, R. S., Sharma, R. K., Jat, G. R., Pundir, A. K., and Gathala, M. K. 2007. Effect of tillage and herbicides on weeds and productivity of wheat under rice–wheat growing system. Crop Prot. 26 :16891696.Google Scholar
Chhokar, R. S., Sharma, R. K., Singh, R. K., and Gill, S. C. 2008. Herbicide resistance in littleseed canarygrass (Phalaris minor) and its management. Page 106 in Proceedings of the 14th Australian Agronomy Conference. Adelaide, South Australia : Australian Society of Agronomy.Google Scholar
Chhokar, R. S., Singh, S., Sharma, R. K., and Singh, M. 2009. Influence of straw management on Phalaris minor control. Indian J. Weed Sci. 41 :150156.Google Scholar
Dawson, J. H. and Bruns, V. F. 1975. Longevity of barnyardgrass, greenfoxtail, and yellow foxtail seeds in soil. Weed Sci. 23 :437440.Google Scholar
Delouche, J. C., Burgos, N. R., Gealy, D. R. G. Z., de San, Martin, Labrada, R., Larinde, M., and Rosell, C. 2007. Weedy Rices—Origin, Biology, Ecology and Control. Rome : FAO Plant Production and Protection Paper 188. 155 p.Google Scholar
Dhawan, R. 2005. Studies on germination and emergence of Rumex maritimus . Indian J. Weed Sci. 37 :144146.Google Scholar
Dhawan, R. 2009. Factors affecting germination, emergence and establishment of Melilotus indica (L.) All. Indian J. Weed Sci. 41 :127133.Google Scholar
Doran, J. W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44 :765771.Google Scholar
Egley, G. H. and Chandler, J. M. 1978. Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci. 26 :230239.Google Scholar
Erenstein, O. and Laxmi, V. 2008. Zero tillage impact in India's rice–wheat systems: a review. Soil Till. Res. 100 :114.Google Scholar
Franke, A. C., McRoberts, N., Marshall, G., Malik, R. K., Singh, S., and Nehra, A. S. 2003. A survey of Phalaris minor in the Indian rice–wheat system. Exp. Agric. 39 :253265.Google Scholar
Franke, A. C., Singh, S., Mcroberts, N., Nehra, A. S., Godara, S., Malik, R. K., and Marshall, G. 2007. Phalaris minor seedbank studies: longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 47 :7383.Google Scholar
Froud-Williams, R. J., Chancellor, R. J., and Drennan, D.S.H. 1983. Influence of cultivation regime upon buried weed seeds in arable cropping systems. J. Appl. Ecol. 20 :199208.Google Scholar
Gallandt, E. R., Fuerst, E. P., and Kennedy, A. C. 2004. Effects of tillage, fungicide seed treatment, and soil fumigation on annual mortality of Avena fatua . Weed Sci. 52 :597604.Google Scholar
Gallandt, E. R., Liebman, M., and Huggins, D. R. 1999. Improving soil qualities: implications for weed management. J. Crop Prod. 2 :95121.Google Scholar
Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Kumar, V., Kumar, V., and Sharma, P. K. 2011. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 75 :18511862.Google Scholar
Gill, H. S. and Brar, L. S. 1975. Importance of weedicides in the agriculture of Punjab and Haryana. Pesticides 9 :2024.Google Scholar
Gressel, J. 1993. Evolution of herbicide resistance in weeds: causes, prevention, and ameliorative management. Pages 173178 in Proceedings of the 1st International Symposium on Integrated Weed Management for Sustainable Agriculture. Hisar, India : Indian Society of Weed Science.Google Scholar
Gupta, R. and Seth, A. 2007. A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic Plains (IGP). Crop Prot. 26 :436447.Google Scholar
Guyer, R. and Quadranti, M. 1985. Effect of seed rate and nitrogen level on the yield of direct wet-seeded rice. Pages 304311 in Proceedings of the 10th Asian-Pacific Weed Science Society Conference. Chiangmai, Thailand : Asia Pacific Weed Science Society.Google Scholar
Guzzella, L., Pozzoni, F., and Giuliano, G. 2006. Herbicide contamination of surficial groundwater in northern Italy. Environ. Pollut. 142 :344353.Google Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed: March 2012.Google Scholar
House, G. J. and Brust, G. E. 1989. Ecology of low-input, no-tillage agroecosystems. Agric. Ecosyst. Environ. 27 :331345.Google Scholar
[HRAC] Herbicide Resistance Action Committee. 2012. HRAC Website. http://www.hracglobal.com/. Accessed: July 10, 2012.Google Scholar
Hulme, P. E. 1994. Post-dispersal seed predation in grassland: its magnitude and sources of variation. J. Ecol. 81 :645652.Google Scholar
[IRRI] International Rice Research Institute. 2011. Annual Report 2010. Los Banõs, Philippines : International Rice Research Institute.Google Scholar
Johnson, D. E. and Mortimer, A. M. 2005. Issues for integrated weed management and decision support in direct-seeded rice. Pages 211214 in Toriyama, K., Heong, K. L., and Hardy, B., eds. Rice Is Life: Scientific Perspectives for the 21st Century. Los Banõs, Philippines: International Rice Research Institute; Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.Google Scholar
Johri, A. K., Singh, G., and Sharma, D. 1992. Nutrient uptake by wheat and associated weeds as influenced by management practice. Trop. Agric. 69 :391393.Google Scholar
Kaur, H., Brar, H. S., and Walia, U. S. 2003. Competitive ability of wheat cultivars sown on different dates with littleseed canarygrass (Phalaris minor Retz.). Indian J. Weed Sci. 35 :2123.Google Scholar
Kelley, A. D. and Bruns, V. F. 1975. Dissemination of weed seeds by irrigation water. Weed Sci. 23 :486493.Google Scholar
Kennedy, A. C. 1999. Soil microorganisms for weed management. J. Prod. Agric. 2 :123138.Google Scholar
Kumar, S. 2003. Competition and Control of Weeds in Wheat (Triticum aestivum L.) Cultivars. . Hisar, India : CCS Haryana Agricultural University. 97 p.Google Scholar
Kumar, V., Bellinder, R. R., Gupta, R. K., Malik, R. K., and Brainard, D. C. 2008. Role of herbicide resistant rice in promoting resource conservation technologies in rice–wheat cropping systems in India: a review. Crop Prot. 27 :290301.Google Scholar
Kumar, V., Brainard, D. C., Bellinder, R. R., and Hahn, R. R. 2011. Buckwheat residue effects on emergence and growth of weeds in winter-wheat (Triticum aestivum) cropping systems. Weed Sci. 59 :567573.Google Scholar
Kumar, V. and Ladha, J. K. 2011. Direct-seeding of rice: recent developments and future research needs. Adv. Agron. 111 :297413.Google Scholar
Kurchonia, S. P., Tiwari, J. P., Patel, M. L., and Jain, H. C. 1993. Effect of chemical weed control under different sowing dates and planting patterns on growth and sink potential of dwarf wheat (Triticum aestivum). Indian J. Agric. Sci. 63 :591593.Google Scholar
Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A.P., Gami, S.K., Bhandari, A.L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., Gupta, R. K., Hobbs, P. R. 2003. How extensive are yield declines in long-term rice–wheat experiments in Asia? Field Crops Res. 81 :159180.Google Scholar
Ladha, J. K., Kumar, V., Alam, M. M., Sharma, S., Gathala, M., Chandna, P., Saharawat, Y. S., and Balasubramanian, V. 2009. Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice-wheat system in South Asia. Pages 69108 in Ladha, J. K., Singh, Y., Erenstein, O., and Hardy, B., eds. Integrated Crop and Resource Management in the Rice–Wheat System of South Asia. Los Banõs, Philippines : International Rice Research Institute.Google Scholar
Lee, H. K. and Moody, K. 1988. Seed viability and growth characteristics of Eclipta prostrata (L.). Korean J. Weed Sci. 8 :309316.Google Scholar
Leishman, M. R., Masters, G. J., Clarke, I. P., and Brown, V. K. 2000. Seed bank dynamics: the role of fungal pathogens and climate change. Funct. Ecol. 14 :293299.Google Scholar
Lupwayi, N. W., Rice, W. A., and Clayton, G. W. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30 :17331741.Google Scholar
Mahajan, G. and Brar, L. S. 2002. Integrated management of Phalaris minor in wheat: rationale and approaches—a review. Agric. Rev. 23 :241251.Google Scholar
Mahajan, G. and Chauhan, B. S. 2011. Effects of planting pattern and cultivar on weed and crop growth in aerobic rice system. Weed Technol. 25 :521525.Google Scholar
Mahajan, G., Ramesha, M. S., and Rupinder-Kaur, . 2011. Screening for weed competitiveness in rice—way to sustainable rice production in the face of global climate change. Proceedings of International Conference on Preparing Agriculture for Climate Change, Ludhiana, Feb 6–8, 2011.Google Scholar
Malik, R. K. and Singh, S. 1993. Evolving strategies for herbicide use in wheat: resistance and integrated weed management. Pages 225238 in Proceedings of the International Symposium on Integrated Weed Management for Sustainable Agriculture. Hisar, India : Indian Society of Weed Science.Google Scholar
Malik, R. K. and Singh, S. 1995. Littleseed canarygrass (Phalaris minor) resistance to isoproturon in India. Weed Technol. 9 :419425.Google Scholar
Malik, R. K. and Yadav, A. A. 2008. Direct-seeded rice in the Indo-Gangetic Plain: progress, problems and opportunities. Pages 133143 in Humphreys, E. and Roth, C. H., eds. Permanent Beds and Rice-Residue Management for Rice–Wheat Systems in the Indo-Gangetic Plain. Canberra, Australia: Australian Centre for International Agricultural Research. http://aciar.gov.au/publication/PR127.Google Scholar
Malik, R. K., Yadav, A., Singh, S., Malik, R. S., Balyan, R. S., Banga, R. S., Sardana, P. K., Jaipal, S., Hobbs, P. R., Gill, G., Singh, S., Gupta, R. K., and Bellinder, R. 2002. Herbicide Resistance Management and Evolution of Zero-Tillage—A Success Story. Hisar, India : CCS Haryana Agricultural University Research Bulletin. 43 p.Google Scholar
Maun, M. A. and Barrett, S.C.H. 1986. The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Can. J. Plant Sci. 66 :739759.Google Scholar
Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecol. Appl. 3 :5373.Google Scholar
Mohler, C. L. 1996. Ecological bases for the cultural control of annual weeds. J. Prod. Agric. 9 :468474.Google Scholar
Mohler, C. L. and Callaway, M. B. 1991. Effects of tillage and mulch on emergence and survival of weeds in sweet corn. J. Appl. Ecol. 29 :2134.Google Scholar
Mohler, C. L. and Teasdale, T. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33 :487499.Google Scholar
Mongia, A. D., Sharma, R. K., Kharub, A. S., Tripathi, S. C., Chhokar, R. S., and Shoran, Jag. 2005. Coordinated Research on Wheat Production Technology in India. Karnal, India : Directorate of Wheat Research Bulletein No. 20. Pages 40 p.Google Scholar
Papendick, R. I. and Parr, J. F. 1997. No-till farming: the way of the future for a sustainable dryland agriculture. Ann. Arid Zone 36 :193208.Google Scholar
Paul, S. and Gill, H. S. 1979. Ecology of Phalaris minor in wheat-crop ecosystem. Trop. Ecol. 20 :186191.Google Scholar
Pingali, P. L. and Marquez, C. B. 1996. Herbicides and rice farmer health: a Philippine study. Pages 5568 in Naylor, R., ed. Herbicides in Asian Rice: Transitions in Weed Management. Palo Alto CA : Institute for International Studies, Stanford University and Manila (Philippines): International Rice Research Institute.Google Scholar
Pitty, A., Staniforth, D. W., and Tiffany, L. H. 1987. Fungi associated with caryopses of Setaria species from field-harvested seeds and from soil under two tillage systems. Weed Sci. 35 :319323.Google Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., and Mortimer, A. M. 2007. Weed management in direct-seeded rice. Adv. Agron. 93 :153255.Google Scholar
Renu, S., Thomas, C. G., and Abraham, C. T. 2000. Stale seedbed technique for the management of Sacciolepis interrupta in semi-dry rice. Indian J. Weed Sci. 32 :140145.Google Scholar
Saeed, M. A. and Sabir, A. W. 1993. Dormancy behaviour of Dactyloctenium aegyptium and effect of temperature, pH and pre-soaking on seed germination. Pak. J. Agric. Res. 14 :314319.Google Scholar
Sanchez, P. A. 1973. Puddling tropical soils. 2. Effects on water losses. Soil Sci. 115 :303308.Google Scholar
Sanders, B. A. 1994. The life cycle and ecology of Cyperus difformis (rice weed) in temperate Australia: a review. Aust. J. Exp. Agric. 34 :10311038.Google Scholar
Sharma, P. K., Ladha, J. K., and Bhushan, L. 2003. Soil physical effects of puddling in rice-wheat cropping systems. Pages 97113 in Ladha, J. K., Hill, J. E., Duxbury, J. M., Gupta, R. K., and Buresh, R. J., eds. Improving the Productivity and Sustainability of Rice–Wheat Systems: Issues and Impacts. Madison WI : ASA Special Publication 65.Google Scholar
Sharma, R. K., Chhokar, R. S., Jat, M. L., Singh, Samar, Mishra, B., and Gupta, R. K. 2008. Direct drilling of wheat into rice residues: experiences in Haryana and western Uttar Pradesh. Pages 147158 in Humphreys, E. and Roth, C. H., eds. Permanent Beds and Rice-Residue Management for Rice–Wheat Systems in the Indo-Gangetic Plain. Canbera, Australia: Australian Centre for International Agricultural Research (ACIAR) Proceedings No. 127. www.aciar.gov.au/publication/PR127.Google Scholar
Singh, S. 2007. Role of management practices on control of isoproturon-resistant littleseed canarygrass (Phalaris minor) in India. Weed Technol. 21 :239346.Google Scholar
Singh, S., Chhokar, R. S., Gopal, R., Ladha, J. K., Gupta, R. K., Kumar, V., and Singh, M. 2009. Integrated weed management: a key to success for direct-seeded rice in the Indo-Gangetic plains. Pages 261278 in Ladha, J. K., Singh, Y., Erenstein, O., and Hardy, B., eds. Integrated Crop and Resource Management in the Rice–Wheat System of South Asia. Los Banõs, Philippines : International Rice Research Institute.Google Scholar
Singh, S., Kirkwood, R. C., and Marshall, G. 1999. A review of the biology and control of Phalaris minor Retz. (littleseed canarygrass) in cereals. Crop Prot. 18 :116.Google Scholar
Singh, S., Ladha, J. K., Gupta, R. K., Bhusan, L., Rao, A. N., Sivaprasad, B., and Singh, P. P. 2007. Evaluation of mulching, intercropping with sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa L.). Crop Prot. 26 :518524.Google Scholar
Singh, S., Malik, R. K., and Balyan, R. S. 1990. Weed management in wheat. Haryana Farming (India) 19 :1516.Google Scholar
Singh, S., Malik, R. K., Balyan, R. S., and Singh, S. 1995. Distribution of weed flora of wheat in Haryana. Indian J. Weed Sci. 27 :114121.Google Scholar
Singh, S. and Punia, S. S. 2009. Effect of seeding depth and flooding on emergence of Malva parviflora, Rumex dentatus and R. spinosus . Indian J. Weed Sci. 41 :127133.Google Scholar
Singh, Y., Singh, V. P., Singh, D., Yadav, D. S., Sinha, R.K.P., Johnson, D. E., and Mortimer, A. M. 2011. The implications of land preparation, crop establishment method and weed management on rice yield variation in the rice–wheat system in the Indo-Gangetic plains. Field Crops Res. 121 :6474.Google Scholar
Spalding, R. F., Watts, D. G., Snow, D. D., Cassada, D. A., Exner, M. E., and Schepers, J. S. 2003. Herbicide loading to shallow ground water beneath Nabraska's management system evaluation area. Environ. Qual. 32 :8491.Google Scholar
Spitters, C.J.T. and Van Den Bergh, J. P. 1982. Competition between crop and weeds: a system approach. Pages 137148 in Holzner, W. and Numata, M., eds. Biology and Ecology of Weeds. The Hague, The Netherland : Junk Publishers.Google Scholar
Timsina, J. and Connor, D. J. 2001. Productivity and management of rice–wheat cropping systems: issues and challenges. Field Crops Res. 69 :93132.Google Scholar
Tripathi, S. C., Mongia, A. D., Sharma, R. K., Kharub, A. S., and Chhokar, R. S. 2005. Wheat productivity at different sowing time in various agro-climatic zones of India. SAARC J. Agric. 3 :191201.Google Scholar
Uremis, I. and Uygur, F. N. 2005. Seed viability of some weed species after 7 years of burial in the Cukurova region of Turkey. Asian J. Plant Sci. 4 :15.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2007. Research Addresses Potential Risks of Atrazine and Related Pesticides. Page 10 in Human Health-Research Contributions Report -EPA/600/R 07/011|June 2007. Washington, DC : Office of Research and Development. http://www.epa.gov/ord. Accessed: August 05, 2012Google Scholar
Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88 :860866.Google Scholar
Yadav, A. and Malik, R. K. 2005. Herbicide Resistant Phalaris minor in Wheat –A Sustainability Issue. Hisar, India : Resource Book—Department of Agronomy and Directorate of Extension Education, CCS Haryana Agricultural University. 152 p.Google Scholar
Yadav, A., Sirohi, R. M., Chauhan, B. S., Bellinder, R., and Malik, R. K. 2002. Alarming contamination of wheat produce with resistant Phalaris minor . Pestology 26 :4144.Google Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 40 :429433.Google Scholar
Zhao, D. L., Bastiaans, L., Atlin, G. N., and Spiertz, J.H.J. 2007. Interaction of genotype × management on vegetative growth and weed suppression of aerobic rice. Field Crops Res. 100 :327340.Google Scholar