Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T14:26:18.673Z Has data issue: false hasContentIssue false

Volunteer Corn (Zea mays) Interference in Dry Edible Bean (Phaseolus vulgaris)

Published online by Cambridge University Press:  23 February 2017

Gustavo M. Sbatella*
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Andrew R. Kniss
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Emmanuel C. Omondi
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Robert G. Wilson
Panhandle Research and Extension Center, University of Nebraska, Scottsbluff, NE 69361
Corresponding author's E-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Volunteer corn can affect dry bean by reducing yields; expanding the life cycle of insects, mites, and pathogens; interfering with harvest; and contaminating bean seed. Field studies were conducted at Lingle, WY, and Scottsbluff, NE, to determine the relationship between volunteer corn density and dry bean yield, establish the proper time of volunteer corn removal, and determine whether dry bean yield was affected by the method used to remove volunteer corn. Volunteer corn reduced dry bean yields, as recorded in other crops. Growing conditions for each location were different, as indicated by the accumulated growing degree days (GDD): Lingle 2008 (990), Lingle 2009 (780), and Scottsbluff 2009 (957). No difference in dry bean yields was observed between hand removal of volunteer corn and herbicide application. Dry bean yield loss increased with longer periods of volunteer corn competition and ranged from 1.2 to 1.8% yield loss for every 100 GDD that control was delayed. Control measures should be implemented 15 to 20 d after planting when volunteer corn densities are close to 1 plant m−2. Dry bean yield losses also increased as volunteer corn densities increased, with losses from 6.5 to 19.3% for 1 volunteer corn plant m−2. Based on 2015 prices, the cost of controlling volunteer corn would be the equivalent of 102 kg ha−1 of dry bean, and potential losses above 4% would justify control and should not be delayed beyond 15 to 20 d after planting.

El maíz voluntario puede afectar al frijol común al reducir su rendimiento, al expandir el ciclo de vida de insectos, ácaros y patógenos, al interferir con la cosecha, y al contaminar la semilla de frijol. Se realizaron estudios de campo en Lingle, Wyoming, y en Scottsbluff, Nebraska, para determinar la relación entre la densidad de maíz voluntario y el rendimiento del frijol, para establecer el momento apropiado de remoción del maíz voluntario, y para determinar si el rendimiento del frijol fue afectado por el método usado para remover el maíz voluntario. El maíz voluntario redujo los rendimientos del frijol como ha sido documentado en otros cultivos. Las condiciones de crecimiento fueron diferentes para cada localidad, como lo indicó el acumulado de grados día de crecimiento (GDD): Lingle 2008 (990), Lingle 2009 (780), and Scottsbluff 2009 (957). No se observó ninguna diferencia en el rendimiento del frijol entre la remoción manual del maíz voluntario o con aplicaciones de herbicida. La pérdida en el rendimiento del frijol aumentó con períodos más largos de competencia con el maíz voluntario y varió desde 1.2 a 1.8% de pérdida de rendimiento por cada 100 GDD de retraso en el control. Las medidas de control deberían ser implementadas 15 a 20 d después de la siembra cuando las densidades del maíz voluntario están cerca de 1 planta m−2. Las pérdidas de rendimiento también incrementaron al aumentarse la densidad del maíz voluntario, con pérdidas desde 6.5 a 19.3% para 1 planta de maíz voluntario m−2. Con base en los precios de 2015, el costo de controlar maíz voluntario sería equivalente a 102 kg ha−1 de frijol, y pérdidas potenciales superiores a 4% justificarían el control y este no debería ser retrasado más allá de 15 a 20 d después de la siembra.

Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © Weed Science Society of America


Current address: Rodale Institute, Kutztown, PA 19530.

Associate Editor for this paper: Prashant Jha, Montana State University.


Literature Cited

Alms, J, Moeching, M, Deneke, D, Vos, D (2007) Competitive ability of volunteer corn in corn and soybeans. Proc North Central Weed Sci Soc 62: 14 Google Scholar
Andersen, RN, Geadelman, JL (1982) The effect of parentage on the control of volunteer corn (Zea mays) in soybeans (Glycine max). Weed Sci 30: 127131 Google Scholar
Beckett, TH, Stoller, EW (1988) Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci 36: 159166 Google Scholar
Burnside, OC, Wiens, MJ, Holder, BJ, Weisberg, S, Ristau, EA, Johnson, MM, Cameron, JH (1998) Critical periods for weed control in dry bean (Phaseolus vulgaris). Weed Sci 46: 301306.Google Scholar
Deen, W, Hamill, A, Shropshire, C, Soltani, N, Sikkema, PH (2006) Control of volunteer glyphosate-resistant corn (Zea mays) in glyphosate-resistant soybean (Glycine max). Weed Technol 20: 261266.Google Scholar
Froud-Williams, RJ (2002) Weed competition. Pages 1638 in Naylor, REL, ed. Weed Management Handbook. 9th edn. Oxford, UK: Blackwell Science Google Scholar
Kniss, AR, Sbatella, GM, Wilson, RG (2012) Volunteer glyphosate-resistant corn interference and control in glyphosate-resistant sugar beet. Weed Technol 26: 348355 Google Scholar
Krupke, C, Marquardt, P, Johnson, W, Weller, S, Conley, S (2009) Volunteer corn presents new challenges for insect resistance management. Agron J 101: 797799 Google Scholar
Marquardt, PT, Terry, R, Krupke, CH, Johnson, WG (2012) Competitive effects of volunteer corn on hybrid corn growth and yield Weed Sci 60: 537541 Google Scholar
[NASS] National Agricultural Statistics Service, Agricultural Statistics Board, and [USDA] U.S. Department of Agriculture (2015) Crop Production. Washington, DC: USDA NASS. ISSN: 1936-3737Google Scholar
R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Google Scholar
Schwartz, HF, Brick, MA, Harveson, RM, Franc, GD, eds. (2004) Dry Bean Production and Integrated Pest Management. 2nd edn. Fort Collins, CO: Central High Plains Dry Bean and Beet Group Bull. 562A. 167 pGoogle Scholar
Summers, CG, Newton, AS Jr, Opgenorth, DC (2004) Overwintering of corn leafhopper, Dalbulus maidis (Homeoptera: Cicadellidae), and Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) in California's San Joaquin Valley. Environ Entomol 33: 16441651 Google Scholar
[UNL Extension] University of Nebraska–Lincoln Extension (2015) Guide for Weed Management in Nebraska. Lincoln, NE: The Board of Regents of the University of Nebraska Cooperative Extension Circ. EC130. 188 pGoogle Scholar
[USDA] U.S. Department of Agriculture Economic Research Service (2015) Vegetables and Melons Outlook/VGS-355. Accessed December 16, 2015Google Scholar
Wilson, RG (1993) Wild proso millet (Panicum milliaceum) interference in dry beans (Phaseolus vulgaris). Weed Sci 41: 607610 Google Scholar
Wilson, RK (2014) Nebraska Farm Custom Rates—Part I. Lincoln, NE: University of Nebraska Cooperative Extension Circular EC823. P 9 Google Scholar
Zimdahl, RL (2013) Fundamentals of Weed Science. 4th edn. San Diego, CA: Academic Press. 664 pGoogle Scholar