Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T04:44:23.327Z Has data issue: false hasContentIssue false

Tolerance of Tomato to Herbicides Applied through Drip Irrigation

Published online by Cambridge University Press:  20 January 2017

Peter J. Dittmar
Affiliation:
Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Fitzgerald L. Booker
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service and Department of Crop Science, North Carolina State University, Raleigh, NC 27695

Abstract

Greenhouse and field studies were conducted to determine tolerance of tomato to halosulfuron, imazosulfuron, and trifloxysulfuron herbicides applied through drip irrigation. In greenhouse studies, PRE- and POST-applied trifloxysulfuron caused greater tomato injury (14 and 54% injury, respectively) than PRE- and POST-applied halosulfuron (5 and 26% injury, respectively) or imazosulfuron (5 and 23% injury, respectively). All herbicide treatments in the greenhouse studies caused greater injury to tomato than the nontreated. Greater tomato injury was observed in the greenhouse from herbicides applied POST than when soil applied. Tomato injury from POST-applied halosulfuron, imazosulfuron, or trifloxysulfuron followed a linear relationship, with tomato injury increasing with increasing herbicide rate. Tomato photosynthetic rate did not differ among the herbicide treatments (32.7 to 55.0 μmol m−2 s−1) and the nontreated (38.0 to 55.0 μmol m−2 s−1). At 5 to 16 days after treatment (DAT), tomato treated with imazosulfuron POST (0.26 to 0.46 cm s−1) or trifloxysulfuron POST (0.27 to 0.51 cm s−1) had lower stomatal conductance compared to the stomatal conductance of the nontreated tomato (0.65 to 0.76 cm s−1). Chlorophyll content did not differ among treatments at 0 to 6 DAT. At 7 to 12 DAT, tomato treated with imazosulfuron POST (34.0 to 40.1 SPAD) and trifloxysulfuron POST (35.0 to 41.6 SPAD) had lower chlorophyll content compared to the nontreated (39.1 to 48.1 SPAD). In 2008 and 2009 field studies, no tomato injury was observed. Herbicide, herbicide application method, and herbicide rate had no effect on tomato height (73 to 77 cm 14 DAT, 79 to 84 cm 21 DAT) and total fruit yield (62,722 to 80,328 kg ha−1).

Se realizaron estudios de invernadero y de campo para determinar la tolerancia del tomate a halosulfuron, imazosulfuron y trifloxysulfuron aplicados a travõs de un sistema de riego por goteo. En los estudios de invernadero, trifloxysulfuron aplicado PRE y POST causõ más dańo al tomate (14 y 54%, respectivamente) que halosulfuron aplicado PRE y POST (5 y 26%, respectivamente) o imazosulfuron (5 y 23%, respectivamente). En los estudios de invernadero, todos los tratamientos de herbicidas causaron mayor daño al tomate que el testigo no-tratado. En el invernadero cuando se aplicaron los herbicidas POST, se observõ un mayor daño que cuando se aplicaron al suelo. El daño al tomate causado por halosulfuron, imazosulfuron o trifloxysulfuron aplicados POST siguiõ una relaciõn lineal, incrementándose el daño al tomate conforme incrementõ la dosis del herbicida. La tasa fotosintõtica del tomate no difiriõ entre los tratamientos de herbicidas (32.7 a 55.0 mol m-2 s-1) y el testigo no-tratado (38.0 a 55.0 mol m-2 s-1). De 5 a 16 dúas despuõs del tratamiento (DAT), el tomate tratado con imazosulfuron POST (0.26 a 0.46 cm s-1) o trifloxysulfuron (0.27 a 0.52 cm s-1) tuvo una menor conductancia estomática comparado con el tomate no-tratado (0.65 a 0.76 cm s-1). El contenido de clorofila no difiriõ entre tratamientos de 0 a 6 DAT. De 7 a 12 DAT, el tomate tratado con imazosulfuron POST (34.0 a 40.1 SPAD) and trifloxysulfuron (35.0 a 41.6 SPAD) tuvo un menor contenido de clorofila comparado con el testigo no-tratado (39.1 a 48.1 SPAD). En los estudios de campo en 2008 y 2009, no se observõ ningún daño al tomate. El herbicida, el mõtodo de aplicaciõn del herbicida y la dosis del herbicida no tuvieron efecto sobre la altura del tomate (73 a 77 cm 14 DAT, 79 a 84 cm 21 DAT) y el rendimiento total de fruto (62,722 a 80,328 kg ha-1).

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2006. Envoke herbicide label SCP1132A-L2C 1106. Greensboro, NC. Syngenta Crop Protection. 12 p.Google Scholar
Anonymous. 2007. Sandea herbicide label 01-R0705. Yuma, AZ. Gowan Company. 9 p.Google Scholar
Adcock, C. W., Foshee, W. G. III, Wehtje, G. R., and Gilliam, C. H. 2008. Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in plastic mulch for multi-cropping systems. Weed Technol. 22 :136141.Google Scholar
Bhatti, M. A., Felsot, A. S., Parker, R., and Mink, G. 1998. Leaf photosynthesis, stomatal resistance, and growth of wine grapes (Vitis vinifera L.) after exposure to simulated chlorsulfuron drift. J. Environ. Sci. Health B 33 :6781.Google Scholar
Bhella, H. S. 1988. Tomato response to trickle irrigation and black polyethylene mulch. J. Am. Soc. Hort. Sci. 113 :543546.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29 :263281.Google Scholar
Buckelew, J. K., Monks, D. W., and Jennings, K. M. 2007. Response of transplanted plasticulture tomato to post-directed thifensulfuron and trifloxysulfuron. Proc. South. Weed Sci. Soc. 60 :142.Google Scholar
Camper, N. D., ed. 1986. Research Methods in Weed Science. Champaign, IL. Southern Weed Science Society.Google Scholar
Candole, B. L., Csinos, A. S., and Wang, D. 2007a. Concentrations in soil and efficacy of drip-applied 1, 3-D + chloropicrin and metam sodium in plastic-mulched sandy soil beds. Crop Prot. 26 :18011809.Google Scholar
Candole, B. L., Csinos, A. S., and Wang, D. 2007b. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds. Pest Manag. Sci. 63 :468475.Google Scholar
Chapin, F. S. III, Walter, C.H.S., and Clarkson, D. T. 1988. Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta 173 :352366.Google Scholar
Dittmar, P. J., Monks, D. W., and Jennings, K. M. 2012. Effect of drip-applied herbicides on yellow nutsedge (Cyperus esculentus) in plasticulture. Weed Technol. 26 :243247.Google Scholar
Farneselli, M., Studstill, D. W., Simonne, E. H., Hochmuth, R. C., Hochmuth, G. J., and Tei, F. 2008. Depth and width of the wetted zone in a sandy soil after leaching drip-irrigation events and implication for nitrate-load calculations. Commun. Soil Sci. Plant Anal. 39 :11831192.Google Scholar
Felix, J. and Boydston, R. 2010. Evaluation of imazosulfuron for yellow nutsedge (Cyperus esculentus) and broadleaf weed control in potato. Weed Technol. 24 :471477.Google Scholar
Fennimore, S. A., Haar, M. J., and Ajwa, H. A. 2003. Weed control in strawberry provided by shank-and drip-applied methyl bromide alternative fumigants. HortScience 38 :5561.CrossRefGoogle Scholar
Gordon, G. G., Foshe, W. G. III, Reed, S. T., Brown, J. E., Vinson, E., and Woods, F. M. 2008. Plastic mulches and row covers on growth and production of summer squash. Int. J. Veg. Sci. 14 :322338.Google Scholar
Henson, I. E. and Little, C. S. 1969. Penetration of polyethylene film by the shoots of Cyperus rotundus. Pest Artic. News 15 :6466.Google Scholar
Jennings, K. M. 2010. Tolerance of fresh-market tomato to postemergence-directed imazosulfuron, halosulfuron, and trifloxysulfuron. Weed Technol. 24 :117120.Google Scholar
Johnson, W. C. III, and Mullinix, B. G. Jr. 2008. Cultural control of yellow nutsedge (Cyperus esculentus) in transplanted cantaloupe (Cucumis melo) by varying application timing and type of thin-film mulches. Crop Prot. 27 :735739.Google Scholar
Jones, T. L., Jones, U. S., and Ezell, D. O. 1977. Effect of nitrogen and plastic mulch on properties of Troup loamy sand and yield of “Walter” tomatoes. J. Am. Soc. Hort. Sci. 102 :273275.Google Scholar
Kemble, J. M., ed. 2010. Vegetable Crop Handbook for Southeastern US—2010. Lincolnshire, IL : Vance Publishing.Google Scholar
Lamont, W. J., Orzolek, M. D., and Bruce, D.Y.E. 2002. Production of drip irrigated potatoes as affected by plastic mulches and row covers. J. Veg. Crop Prod. 8(2) :3947.Google Scholar
Martin, B., Ort, D. R., and Boyer, J. S. 1981. Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol. 68 :329334.Google Scholar
McElroy, S., Yelverton, F. H., Troxler, S. C., and Wilcut, J. W. 2003. Selective exposure of yellow (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) to postemergence treatments of CGA-362622, imazaquin, and MSMA. Weed Technol. 17 :554559.Google Scholar
Morales-Garcia, D., Stewart, K. A., Seguin, P., and Madramootoo, C. 2010. Saline drip irrigation and polyethylene mulch on yield and water use efficiency of bell peppers. Int. J. Veg. Sci. 16 :314.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1997. Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) vegetative growth and fruit yield. Weed Technol. 11 :762767.Google Scholar
Morales-Payan, J. P., Stall, W. M., Shilling, D. G., Charudattan, R., Dusky, J. A., and Bewick, T. A. 2003. Above- and below ground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci. 51 :181185.Google Scholar
Pekarek, R. A. 2008. Evaluation of a ‘Caliente' Mustard Cover Crop. S-metolachlor, Imazosulfuron, and Thifensulfuron-Methyl for Weed Control in Bell Pepper. . Raleigh, NC: North Carolina State University.Google Scholar
Poling, E. B. 1993. Strawberry plasticulture in North Carolina: II. Preplant, planting, and postplant considerations for growing ‘Chandler' strawberry on black plastic mulch. HortTechnology 3 :383393.Google Scholar
Riethmuller-Haage, I., Bastiaans, L., Harbinson, J., Kempenaar, C., and Kropff, M. J. 2006. Influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation, regulation and organization of photosynthesis in Solanum nigrum . Photosynth. Res. 88 :331341.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., and Norton, J. A. 2006. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Prot. 25 :690695.Google Scholar
Schalk, J. M. and Robbins, M. L. 1987. Reflective film mulches influence plant survival, production, and insect control in fall tomatoes. HortScience 22 :3032.Google Scholar
Shrefler, J. W., Brandenberger, L. P., Webber, C. L. III, Roberts, W., Payton, M. E., and Wells, L. K. 2007. POST weed control using halosulfuron in direct-seeded watermelon. Weed Technol. 21 :851856.Google Scholar
[USDA-NASS] United States Department of Agriculture-National Agricultural Statistics Service. 2009. 2007 Census of Agriculture. Washington, DC : USDA.Google Scholar
United States Department of Agriculture–Agricultural Marketing Service. 1997. United States Standards for Grades of Fresh Tomatoes. Washington, DC : USDA.Google Scholar
Vencill, W. K., Richburg, J. S. III, Wilcut, J. W., and Hawf, L. R. 1995. Effect of MON-12037 on purple (Cyperus rotundus) and yellow (Cyperus esculentus) nutsedge. Weed Technol. 9 :148152.Google Scholar
Webster, T. M. 2005. Mulch type affects growth and tuber production of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus). Weed Sci. 53 :834838.Google Scholar
Webster, T. M. 2006. Weed survey–southern states. Proc. South. Weed. Sci. Soc. 59 :266268.Google Scholar
Webster, T. and Culpepper, A. 2005. Eggplant tolerance to halosulfuron applied through drip irrigation. HortScience 40 :17961800.Google Scholar
Wien, H. C. and Minotti, P. L. 1987. Growth yield, and nutrient uptake of transplanted fresh-market tomatoes as affected by plastic mulch and initial nitrogen rate. J. Am. Soc. Hort. Sci. 112 :759763.Google Scholar