Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T03:41:10.355Z Has data issue: false hasContentIssue false

Tillage Affects Imazamox Carryover in Yellow Mustard

Published online by Cambridge University Press:  20 January 2017

Jonquil Rood
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Joan Campbell*
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Donn Thill
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
Dan Ball
Affiliation:
Columbia Basin Agricultural Research Station, Oregon State University, Pendleton, OR 97801
Larry Bennett
Affiliation:
Columbia Basin Agricultural Research Station, Oregon State University, Pendleton, OR 97801
Joseph Yenish
Affiliation:
Department of Crops and Soils, Washington State University, Pullman, WA 99164
John Nelson
Affiliation:
Department of Crops and Soils, Washington State University, Pullman, WA 99164
Rod Rood
Affiliation:
Department of Crops and Soils, Washington State University, Pullman, WA 99164
Bahman Shafii
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
William Price
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
*
Corresponding author's E-mail: jcampbel@uidaho.edu

Abstract

Farmers grow crops in the dryland region of the Pacific Northwest (PNW) using tillage practices ranging from moldboard plowing to no-tillage. The objective of this study was to determine the effect of tillage on persistence of imazamox herbicide in intermediate and high precipitation zones of the inland PNW. Along with a nontreated control, imazamox was applied to imidazolinone-tolerant winter wheat in the fall and spring at one, two, and three times the maximum labeled rate at locations near Genesee, ID, Davenport, WA, and Pendleton, OR. Moldboard plow, chisel plow, and no-till tillage treatments were implemented soon after wheat harvest and yellow mustard was planted the following season to determine crop response. Experiments were conducted at each location in 2005 to 2007 and 2006 to 2008. There were significant location by year and year and location interactions. There was no significant tillage by imazamox rate interaction, except at Pendleton in year 2, for all measured yellow mustard responses (crop injury, biomass, and yield). Genesee was colder than Pendleton and had more precipitation than Davenport, resulting in more injury to yellow mustard at Genesee than at Pendleton but less than at Davenport. Davenport had greater injury than the other two locations, likely due to lower soil pH, higher organic matter (OM), and cooler, drier climate, which allowed imazamox to persist longer in the soil. Overall, Pendleton had the least yellow mustard injury, which likely was related to its warmer, wetter climate and the concomitant rapid soil dissipation of imazamox. Tillage did not reduce the persistence of imazamox. Yellow mustard had the lowest injury and had greater mature biomass and seed yield in no-till seeded plots when averaged across imazamox rates compared to moldboard and chisel-plowed plots.

Los agricultores cultivan en la región seca del Pacífico Noroeste (PNW), usando prácticas de labranza que van desde el uso del arado de vertedera al sistema de cero labranza. El objetivo de este estudio fue determinar el efecto de la labranza sobre la persistencia del herbicida imazamox en zonas de precipitación intermedia y alta del interior del PNW. Además de un testigo no tratado, se aplicó imazamox a trigo de invierno tolerante a imidazolinone en el otoño y primavera, a una, dos y tres veces la dosis máxima recomendada, en sitios cercanos a Genesee, ID, Davenport, WA, y Pendleton, OR. Los tratamientos con arado de vertedera, arado de cinceles y cero labranza fueron implementados inmediatamente después de la cosecha de trigo y en la siguiente temporada se sembró Synapis alba para determinar la respuesta del cultivo. Los experimentos se realizaron en cada sitio en 2005–2007 y 2006–2008. Hubo interacciones significativas de sitio por año y de año y sitio. No hubo ninguna interacción significativa de tipo de labranza por dosis de imazamox, excepto en Pendleton en el año 2, para todas las respuestas cuantificadas de S. alba (el daño al cultivo, la biomasa y el rendimiento). Hizo más frío en Genesee que en Pendleton y en Genesee hubo más precipitación que en Davenport, originando más daño a S. alba en Genesee que en Pendleton, pero menor que en Davenport. Davenport tuvo mayor daño que en los otros dos sitios, probablemente debido al pH de suelo más bajo, mayor OM y un clima más frío y seco, lo cual permitió que imazamox persistiera mayor tiempo en el suelo. En general, Pendleton reportó el menor daño de S. alba, lo cual probablemente fue atribuido a su clima más cálido y húmedo y a la concomitante y rápida disipación de imazamox en el suelo. La labranza no redujo la persistencia de imazamox. En las parcelas sembradas bajo el sistema de cero labranza, S. alba sufrió el menor daño, tuvo mayor biomasa madura y mayor rendimiento de semilla, cuando se promedió a través de todas las dosis de imazamox, en comparación con las parcelas donde se usó el arado de vertedera o el arado de cinceles.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2009. Beyond® herbicide product label. BASF publication 04-191-0084. Research Triangle Park, NC BASF. 22 p.Google Scholar
Ball, D. A., Yenish, J. P., and Alby, T. III. 2003. Effect of imazamox soil persistence on dryland rotational crops. Weed Technol. 17:161165.Google Scholar
Basham, G. W. and Lavy, T. L. 1987. Microbial and photolytic dissipation of imazaquin in soil. Weed Sci. 35:865870.CrossRefGoogle Scholar
Curran, W. S. 1998. Persistence of herbicides in soil. Agronomy Facts 36. University Park, PA Pennsylvania State University. 4 p.Google Scholar
Hanson, B. D., Rauch, T. A., and Thill, D. C. 2004. Plantback restrictions for herbicides used in the dryland wheat production areas of the Pacific Northwest. PNW Bulletin 571. Moscow, Idaho University of Idaho Cooperative Extension System. 7 p.Google Scholar
Hartzler, R. G., Fawcett, R. S., and Owen, M.D.K. 1989. Effects of tillage on trifluralin residue carryover injury to corn (Zea mays). Weed Sci. 37:609615.Google Scholar
Hurle, K. and Walker, A. 1980. Persistence and its prediction. Pages 83122 in Hance, R. J., ed. Interactions between Herbicides and the Soil. New York Academic Press.Google Scholar
Loux, M. M. and Reese, K. D. 1993. Effect of soil type and pH on persistence and carryover of imidazolinone herbicides. Weed Technol. 7:452458.Google Scholar
Malefyt, T. and Quakenbush, L. 1991. Influence of environmental factors on the biological activity of the imidazolinone herbicides. Pages 103127 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL CRC Press.Google Scholar
Mangels, G. 1991. Behavior of the imidazolinone herbicides in soil—a review of the literature. Pages 191209 in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL CRC Press.Google Scholar
Rainbolt, C. R., Ball, D. A., Thill, D. C., and Yenish, J. P. 2004. Management strategies for preventing herbicide-resistant grass weeds in Clearfield wheat systems. PNW Bulletin 572. Moscow, Idaho University of Idaho Cooperative Extension System. 8 p.Google Scholar
Rainbolt, C. R., Thill, D. C., and Ball, D. A. 2001. Response of rotational crops to BAY MKH 6561. Weed Technol. 15:365374.Google Scholar
Rauch, T. A. and Thill, D. C. 2003. Rotational crop response to imazamox, flucarbazone, propropcarbazone, and sulfosulfuron. Proc. West. Soc. Weed Sci. 56:56. [Abstract]Google Scholar
SAS 9.1. 2007. Cary, NC SAS Institute Inc., SAS Campus Dr., Cary, NC 27513.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Shinn, S. L., Thill, D. C., Price, W. J., and Ball, D. A. 1998. Response of downy brome and rotational crops to MON 37500. Weed Technol. 12:690698.Google Scholar