Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T12:42:08.743Z Has data issue: false hasContentIssue false

Suitability of Passive Integrated Transponder (PIT) Tags for Tracking Weed Seed Movement in Soils

Published online by Cambridge University Press:  20 January 2017

David W. Wilson*
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Gustavo M. Sbatella
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
QiQi Wang
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Stephen D. Miller
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
*
Corresponding author's E-mail: dwwilson@uwyo.edu.

Abstract

Information linking seed movement, along with changes in seed viability, is critical for understanding weed seed dynamics. Studies were conducted to examine the use of passive integrated transponder (PIT) tags placed in nylon mesh packets in combination with GPS (Global Positioning System) technology to track weed seed movement after tillage. Cylindrical PIT tags 11.5, 12, 20, and 23 mm long by 2 mm wide were evaluated in water and soil. Detection improved as tag size increased because of greater signal strength. Tags with the main axis oriented vertically were recovered at greater depths than when placed horizontally. Average detection depths for 12-mm PIT tags were 29.5 cm in water, 18.2 cm in sand, 24 cm in artificial soil, and 21.2 cm in sandy loam soil. Tests also showed that PIT tags and nylon mesh packets were resilient to intense tillage with a rototiller. No significant differences in displacement because of tillage were observed between free PIT tags and PIT-tagged packets. PIT tag performance was further tested in a 2-yr field experiment conducted between September 2003 and October 2005 at six sites in Nebraska and Wyoming. Tilled and no-till blocks were established at each site. PIT-tagged packets in the tilled block and untagged packets in the no-till block were used. Sample burial depths were 0, 2.5, 7.5, and 15 cm. Sample recovery rate did not differ between tilled and no-till blocks. Time of recovery was the main factor affecting recovery of packets buried at 0 and 2.5 cm in both blocks. Seed predation by small rodents and movement of samples beyond the area of study by tillage implements were the main sources of packet loss. Nevertheless, 2 yr after initiation of the study, more than 85% of the samples were recovered. Future development of PIT tag technology will lead to an enhanced ability to monitor seed movement.

Para entender la dinámica de las semillas de malezas es importante contar con información que relacione el movimiento de la semilla junto con los cambios en la viabilidad de la misma. Se llevaron al cabo estudios para examinar el uso de etiquetas PIT (passive integrated transponder) puestas en paquetes de malla de nylon en combinación con tecnología GPS (sistema de posicionamiento global), para monitorear el movimiento de las semillas de malezas después de la labranza. Etiquetas cilíndricas PIT de 11.5, 12, 20 y 23 mm de largo por 2 mm de ancho fueron evaluadas en agua y en suelo. La detección mejoró al incrementar el tamaño debido a una mayor potencia de señal. Las etiquetas con su eje principal orientado verticalmente fueron recuperadas a profundidades mayores que cuando se colocaron horizontalmente. El promedio de profundidad de detección para etiquetas PIT de 12 mm fue de 29.5 cm en agua, 18.2 cm en arena, 24 cm en suelo artificial y 21.2 cm en suelo areno-limoso. Las pruebas mostraron también que las etiquetas PIT y los paquetes de malla de nylon fueron resistentes a labranza intensa con roto-cultivador. No se observaron diferencias significativas en la dispersión después de la labranza entre etiquetas PIT libres y etiquetas PIT en paquetes de malla de nylon. El comportamiento de las etiquetas PIT fue examinado más tarde en un estudio a campo de 2 años durante septiembre de 2003 y octubre de 2005 en 6 sitios en Nebraska y Wyoming. Se establecieron bloques con labranza y sin labranza en cada sitio. Paquetes con etiqueta PIT se usaron en el bloque con labranza y los paquetes sin etiqueta en el bloque sin labranza. Las muestras fueron colocadas a 0, 2.5, 7.5 y 15 cm de profundidad. No hubo diferencia en la taza de recuperación entre bloques con o sin labranza. El periodo de recuperación fue el factor principal que afectó el rescate de los paquetes ubicados a 0 y 2.5 cm en ambos bloques. Depredación de semilla por pequeños roedores y el desplazamiento de muestras fuera del área de estudio por implementos de labranza, fueron la causa principal en la pérdida de paquetes. Sin embargo, dos años después del inicio del estudio, más del 85% de las muestras fueron recuperadas. El desarrollo de la tecnología de etiquetas PIT en el futuro mejorará la habilidad para monitorear el movimiento de las semillas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ball, D. A. 1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci 40:654659.CrossRefGoogle Scholar
Boarman, W. I., Beigel, M. L., Goodlett, G. C., and Sazaki, M. 1998. A passive integrated transponder system for tracking animal movements. Wildlife Soc. B 26:886891.Google Scholar
Booms, T. L. and McCaffery, B. J. 2007. A novel use of passive integrated transponder (PIT) tags as nest markers. J. Field Ornithol 78:8386.CrossRefGoogle Scholar
Clements, D. R., Benoit, D. L., Murphy, S. D., and Swanton, C. J. 1996. Tillage effects on weed seed return and seedbank composition. Weed Sci 44:314322.CrossRefGoogle Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of weed populations. Cambridge, UK: Cambridge University Press. 5585.CrossRefGoogle Scholar
Davis, A. S. and Luschei, E. C. 2009. Living Boundaries: Tracking Weed Seed Movement with Nondormant Seed. Weed Sci 57:163168.CrossRefGoogle Scholar
Froud-Williams, R. J. 1988. Changes in weed flora with different tillage and agronomic management systems. Pages 213227. in Altieri, M. and Liebman, M. eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC Press.Google Scholar
Froud-Williams, R. J., Chancellor, R. J., and Drennan, D. S. H. 1983. Influence of cultivation regime upon buried weed seeds in arable cropping systems. J. Appl. Ecol 21:629641.CrossRefGoogle Scholar
Gibbons, J. W. and Andrews, K. M. 2004. PIT tagging: simple technology at its best. BioScience 54 (5):447454.CrossRefGoogle Scholar
Lamarre, H., MacVicar, B., and Roy, A. G. 2005. Using passive integrated transponder (PIT) tags to investigate sediment transport in gravel-bed rivers. J. Sed. Res 75:736741.CrossRefGoogle Scholar
Miller, S. D. and Nalewaja, J. D. 1990. Influence of burial depth on wild oats (Avena fatua) seed longevity. Weed Technol 4:514517.CrossRefGoogle Scholar
Mohler, C. L., Frisch, J. C., and McCulloch, C. E. 2006. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res 86:110122.CrossRefGoogle Scholar
Omami, E. N., Haigh, A. M., Medd, R. W., and Nicol, H. I. 1999. Changes in germinability, dormancy and viability of Amaranthus retroflexus as affected by depth and duration of burial. Weed Res 39:345354.CrossRefGoogle Scholar
Prentice, E. F., Flagg, T. A., and McCutcheon, C. S. 1990. Feasibility of using implantable passive integrated transponder (PIT) tags in salmonids. American Fisheries Society, Symposium 7:317322.Google Scholar
Rew, L. J. and Cussans, G. W. 1997. Horizontal movement of seeds following tine and plough cultivation: implications for spatial dynamics of weed infestations. Weed Res 37:247256.CrossRefGoogle Scholar
Schreiber, M. M. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci 40:645653.CrossRefGoogle Scholar
Schulte, U., Küsters, D., and Steinfartz, S. 2007. A PIT tag based analysis of annual movement patterns of adult fire salamanders (Salamandra salamandra) in a Middle European habitat. Amphib-Reptilia 28:531536.CrossRefGoogle Scholar
Vander Wall, S. B., Forget, P. M., Lambert, J. E., and Hulme, P. E. 2005. Seed fate pathways: filling the gap between parent and offspring. Pages 18. in Forget, P. M., Lambert, J. E., Hulme, P. E., and Vander Wall, S. B. eds. Seed Fate: Seed Predation, Seed Dispersal and Seedling Establishment. Wallingford, UK: CABI Publishing.Google Scholar
Wang, B. C. and Smith, T. B. 2002. Closing the seed dispersal loop. Trends Ecol. Evol 17:379385.CrossRefGoogle Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci 40:429433.CrossRefGoogle Scholar