Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T09:44:47.718Z Has data issue: false hasContentIssue false

Novel Use of Trinexapac-Ethyl to Study Weed Seed Germination

Published online by Cambridge University Press:  20 January 2017

Héctor Roberto Huarte*
Affiliation:
Department of Crop Sciences, School of Agricultural Sciences, Universidad Católica Argentina (UCA)
Antonio Jesús Ruiz Carmona
Affiliation:
Department of Crop Sciences, School of Agricultural Sciences, Universidad Católica Argentina (UCA)
María Luz Zapiola
Affiliation:
Department of Crop Sciences, School of Agricultural Sciences, Universidad Católica Argentina (UCA)
*
Corresponding author's E-mail: robertohuarte@uca.edu.ar.

Abstract

Understanding seed biology and onset of germination requirements is a key point for designing effective weed management programs. Gibberellins (GAs) are known to play a role in onset of germination of several species. Onset of germination often requires an increase in de novo GA content or an increase in sensitivity to GAs. Reduced germination of seeds incubated in solutions containing compounds that inhibit GA synthesis provide evidence that GAs are required to trigger germination. Trinexapac-ethyl (TE), a GA synthesis inhibitor, is frequently used as a plant growth regulator in crop production. However, to the best of our knowledge, TE has not been used to study the requirement of GAs in onset of germination. Germination studies were conducted using seeds of artichoke thistle and common teasel under a range of TE concentrations (0 to 500 μM TE), a combined solution of 125 μM TE + 100 μM GA3 for artichoke, and 250 μM TE + 100 μM GA3 for common teasel. Germination tests were conducted at 20/10 C (12-h thermoperiod) in darkness for artichoke and at constant 15 C with 12 h of light for common teasel. Germination of artichoke in 125 μM TE was reduced to 47% when compared with the check (95%), but the combined TE + GA3 solution maintained germination at 84%. Germination of common teasel in 250 μM TE was reduced to 10% when compared with the check (91%), and the combined TE + GA3 solution increased germination to 63%. These results demonstrate the utility of TE to study the role of GAs in onset of germination. This novel use of TE is a valuable option to study germination requirements of weed species, and therefore contributes to the design of weed management programs.

El entender la biología de las semillas y los requisitos para la germinación son puntos clave para el diseño de programas de manejo de malezas efectivos. Se sabe que gibberellins (GAs) juegan un papel en el inicio de la germinación en varias especies. El inicio de la germinación a menudo requiere de un aumento en el contenido de GA de novo o un aumento en la sensibilidad a GAs. Germinación reducida de semillas incubadas en soluciones que contienen compuestos que inhiben la síntesis de GA brindan evidencia de que GAs son requeridas para promover la germinación. Trinexapac-ethyl (TE) es un inhibidor de la síntesis de GA que es frecuentemente usado como regulador del crecimiento vegetal en la producción de cultivos. Sin embargo, hasta donde conocemos, TE no ha sido usado para el estudio del requisito de GAs en el inicio de la germinación. Se realizaron estudios de germinación usando semillas de Cynara cardunculus y Dipsacus fullonum con una variedad de concentraciones de TE (0 a 500 μM TE), una solución combinada de 125 μM TE + 100 μM GA3 para C. cardunculus, y 250 μM TE + 100 μM GA3 para D. fullonum. Las pruebas de germinación se realizaron a 20/10 C (período termal de 12-h) en oscuridad para C. cardunculus y a 15 C constantes con 12 h de luz para D. fullonum. La germinación de C. cardunculus en 125 μM TE se redujo a 47% al compararse con el testigo (95%), pero la solución combinada de TE + GA3 mantuvo la germinación a 84%. La germinación de D. fullonum en 250 μM TE se redujo a 10% en comparación con el testigo (91%), y la solución combinada de TE + GA3 aumento la germinación a 63%. Este uso novedoso de TE es una opción valiosa para el estudio de los requisitos de germinación de especies de malezas, y por lo tanto contribuye al diseño de programas de manejo de malezas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arana, MV, De Miguel, LC, Sánchez, RA (2006) A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds. Planta 223:847857 Google Scholar
Baskin, JM, Baskin, CC (2007) A classification system for seed dormancy. Seed Sci Res 14:116 Google Scholar
Finch-Savage, WE, Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytol 171:501523 Google Scholar
Huarte, HR, Benech-Arnold, RL (2005) Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Sci Res 15:8997 Google Scholar
Huarte, HR, Benech-Arnold, RL (2010) Hormonal nature of seed responses to fluctuating temperatures in Cynara cardunculus (L.). Seed Sci Res 20:3945 Google Scholar
Huarte, HR, Zapiola, ML (2011) Breaking seed dormancy in common teasel. Proceedings of the 51st WSSA Annual Meeting, Portland, OR, poster 107 Google Scholar
Huarte, R (2006) Hydrotime analysis of the effect of fluctuating temperatures on seed germination in several non-cultivated species. Seed Sci Technol 34:533547 Google Scholar
Kucera, B, Cohn, MA, Leubner-Metzger, G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281307 Google Scholar
La Greca, CL (2010) Factores Exógenos Implicados en la Terminación del Estado de Dormición de Semillas de Dipsacus fullonum L. [Exogenous Factors Involved in Dipsacus fullonum L. Seed Dormancy Breakeage]. . Buenos Aíres, Argentina: Universidad Católica Argentina. 18p. Available at http://bibliotecadigital.uca.edu.ar/repositorio/tesis/factores-exogenos-estado-dormicion.pdf Google Scholar
Marzoca, A (1976) Manual de Malezas [Weeds Handbook] 3rd edn. Buenos Aires, Argentina: Editorial Hemisferio Sur. Pp 120121 Google Scholar
Potts, DL, Harpole, WS, Goulden, ML, Suding, KN (2008) The impact of invasion and subsequent removal of an exotic thistle, Cynara cardunculus, on CO2 and H2O vapor exchange in a coastal California grassland. Biol Invasions 10:10731084 CrossRefGoogle Scholar
Qian, YL, Engelke, MC (1999) Influence of trinexapac-ethyl on diamond zoysiagrass in a shade environment. Crop Sci 39:202208 CrossRefGoogle Scholar
Rademacher, W (1995) Growth retardants, biochemical features, and applications in horticulture. Acta Hort 394:5774 Google Scholar
Rademacher, W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501531 Google Scholar
Rajala, A, Peltonen-Sainio, P (2001) Plant growth regulator effects on spring cereal root and shoot growth. Agron J 93:936943 Google Scholar
Sawada, Y, Katsumata, T, Kitamura, J, Kawaide, H, Nakajima, M, Asami, T (2008) Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness. J Exp Bot 59:33833393 Google Scholar
Werner, PA (1975) The biology of Canadian weeds.12. Dipsacus sylvestris Huds. Can J Plant Sci 55:783794 Google Scholar
White, VA, Holt, JS (2005) Competition of artichoke thistle (Cynara cardunculus) with native and exotic grassland species. Weed Sci 56:823836 Google Scholar
Yamaguchi, S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225251 Google Scholar
Yamaguchi, S, Kamiya, Y, Nambara, E (2007) Regulation of ABA and GA levels during seed development and germination in Arabidopsis . Pages 224247 in Bradford, KJ, Nonogaki, H, eds. Seed Development, Dormancy and Germination. Annual Plant Reviews, Volume 27. Blackwell Google Scholar
Yang, YY, Nagatani, A, Zhao, YJ, Kang, BJ, Kendrick, RE, Kamiya, Y (1995) Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana . Plant Cell Phys 36:12051211 Google ScholarPubMed
Zapiola, ML, Chastain, TG, Garbacik, CJ, Silberstein, TB, Young, WC (2006) Trinexapac-ethyl and open-field burning maximize seed yield in creeping red fescue. Agron J 98:14271434 CrossRefGoogle Scholar
Zehhar, N, Ingouff, M, Bouya, D, Fer, A (2002) Possible involvement of gibberellins and ethylene in Orobanche ramosa germination. Weed Res 42:464469 Google Scholar