Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T00:58:55.285Z Has data issue: false hasContentIssue false

Influence of Cover Crops on Weed Management in Strip Tillage Peanut

Published online by Cambridge University Press:  20 January 2017

Bridget R. Lassiter
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
David L. Jordan*
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
Gail G. Wilkerson
Affiliation:
Department of Crop Science, North Carolina State University, Campus Box 7620, Raleigh, NC 27695
Barbara B. Shew
Affiliation:
Department of Plant Pathology, North Carolina State University, Campus Box 7903, Raleigh, NC 27695
Rick L. Brandenburg
Affiliation:
Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh NC 27695
*
Corresponding author's E-mail: david_jordan@ncsu.edu

Abstract

Experiments were conducted in North Carolina during 2005, 2006, and 2007 to determine peanut and weed response when peanut was planted in strip tillage after desiccation of cereal rye, Italian ryegrass, oats, triticale, wheat, and native vegetation by glyphosate and paraquat before planting with three in-season herbicide programs. Control of common ragweed and yellow nutsedge did not differ among cover crop treatments when compared within a specific herbicide program. Applying dimethenamid or S-metolachlor plus diclosulam PRE followed by imazapic POST was more effective than a chloroacetamide herbicide PRE followed by acifluorfen, bentazon, and paraquat POST. Incidence of spotted wilt in peanut (caused by a Tospovirus) did not differ when comparing cover crop treatments, regardless of herbicide program. Peanut yield increased in all 3 yr when herbicides were applied POST, compared with clethodim only. Peanut yield was not affected by cover crop treatment. Response to cover crop treatments was comparable, suggesting that growers can select cereal rye, Italian ryegrass, oats, or triticale as an alternative to wheat as a cover crop in peanut systems without experiencing differences associated with in-season weed management.

Durante 2005, 2006 y 2007 se realizaron experimentos en Carolina del Norte para determinar la respuesta del cacahuate (maní) y de las malezas cuando esta leguminosa fue sembrada con labranza en bandas después de la quema química del centeno (Secale cereale), Lolium multiflorum, avena (Avena sativa), triticale (Triticale hexaploide), trigo (Triticum aestivum) y vegetación nativa, aplicando glifosato y paraquat antes de la siembra, con tres programas de herbicida durante el ciclo del cultivo. El control de Ambrosia artemisiifolia y Cyperus esculentus no difirió entre los tratamientos de cultivos de cobertura cuando se comparó dentro del mismo programa específico de herbicidas. La aplicación de dimethenamid o S-metolachlor más diclosulam PRE seguida por imazapic POST, fue más efectiva que el tratamiento con chloroacetamide PRE seguido por acifluorfen, bentazon, y paraquat POST. La incidencia de marchitez moteada severa en el cacahuate (causado por un Tospovirus), no difirió cuando se compararon tratamientos de cultivos de cobertura, sin importar el programa de herbicida. El rendimiento del cacahuate se incrementó en los tres años cuando los herbicidas se aplicaron POST comparado con clethodim solamente. El rendimiento no fue afectado por el tipo de tratamiento de cultivo de cobertura. La respuesta a los tratamientos de cobertura fue similar, lo que sugiere que los agricultores pueden seleccionar centeno, avena, triticale o L. multiflorum como una cobertura alternativa al trigo en los sistemas de cultivo del cacahuate, sin experimentar diferencias asociadas con el manejo de malezas durante el ciclo del cultivo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bailey, W. A., Wilcut, J. W., Jordan, D. L., Swann, C. W., and Langston, V. B. 1999. Weed management in peanut (Arachis hypogaea) with diclosulam preemergence. Weed Technol. 13:450456.Google Scholar
Bennett, A. C., Price, A. J., Sturgill, M. C., Buol, G. S., and Wilkerson, G. G. 2003. HADSS™, Pocket HERB™, and WebHADSS™: decision aids for field crops. Weed Technol. 17:412420.Google Scholar
Bosch, D. D., Potter, T. L., Truman, C. C., and Strickland, T. C. 2008. Hydrologic impacts of strip tillage for a coastal plain soil. In Endale, D. M., ed. Proceedings of the 30th Southern Conservation Agricultural Systems Conference and 8th Annual Georgia Conservervation Production System Training Conference. Tifton, Georgia, July 29–31, 2008Google Scholar
Brandenburg, R. L. 2009. Peanut insect management. Pages 7794 in 2009 Peanut Information. Raleigh, NC North Carolina Cooperative Extension Service AG-331. Pages 132.Google Scholar
Cantonwine, E. G., Culbreath, A. K., and Stevenson, K. L. 2007. Effects of cover crop residue and preplant herbicide on early leaf spot of peanut. Plant Dis. 91:822827.Google Scholar
Chandi, A., Lassiter, B. R., Jordan, D. L., York, A. C., and Burton, J. D. 2009. Management of acetolactate synthase resistant common ragweed in peanut and other row crops. Pages 4950 in Proceedings of the 41st American Peanut Research and Education Society Meeting. College Station, TX APRES.Google Scholar
Chapin, J. W. and Thomas, J. S. 2005. Insect pest management issues in strip till peanut production. In Busscher, W., Frederick, J., and Robinson, S., eds. Proceedings of the Southern Conservation Tillage Systems Conference. Las Cruces, NM Southern Weed Science Society.Google Scholar
Clark, A. 2007. Managing cover crops profitably. 3rd ed. in Sustainable Agriculture Network Handbook Series Book 9. Beltsville, MD National Agricultural Laboratory.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., and Lithourgidis, A. S. 2006a. Allelopathic potential of winter cereal cover crop mulches on grass weed suppression and sugarbeet development. Crop Sci. 46:16821691.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., and Lithourgidis, A. S. 2006b. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci. 46:345352.Google Scholar
Drake, W. L., Jordan, D. L., Schroeder-Moreno, M., et al. 2010. Crop response following tall fescue sod and agronomic crops. Agron. J. 102:16921699.Google Scholar
Edmund, R. M. Jr. and York, A. C. 1987. Effects of rainfall and temperature on postemergence control of Sicklepod (Cassia obtusifolia) with imazaquin and DPX-F6025. Weed Sci. 35:231236.Google Scholar
Everman, W. J., Clewis, S. B., Taylor, Z. G., and Wilcut, J. W. 2006. Influence of diclosulam postemergence application timing on weed control and peanut tolerance. Weed Technol. 20:651657.Google Scholar
Faircloth, W., Rowland, D., and Paton, P. 2008. Cover cropping and strip tillage improve soil moisture retention for peanut in the semi-arid climate of west Texas. In Endale, D. M., ed. Proceedings of the 30th Southern Conservation Agricultural Systems Conference and 8th Annual Georgia Conservervation Production System Training Conference, Tifton, GA.Google Scholar
Faircloth, W. H., Rowland, D. L., Lamb, M. C., Balkcom, K. S., Sullivan, D. G., and Nuti, R. C. 2005. Yield and economic sustainability of reduced irrigation capacity on three tillage systems in the southeastern coastal plain. In Busscher, W., Frederick, J., and Robinson, S., eds. Proceedings of the 27th Southern Conservation Tillage Systems Conference, Florence, SC.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Johnson, G. A., DeFelice, M. S., and Helsel, Z. R. 1993. Cover crop management and weed control in corn (Zea mays). Weed Technol. 7:425430.Google Scholar
Johnson, W. C., Brenneman, T. B., Baker, S. H., Johnson, A. W., Sumner, D. R., and Mullinix, B. G. 2001. Tillage and pest management considerations in a peanut-cotton rotation in the Southeastern coastal plain. Agron. J. 93:570576.Google Scholar
Jordan, D. L. 2009a. Peanut production practices. Pages 2749 in 2009 Peanut Information. Raleigh, NC North Carolina Cooperative Extention Service AG-331. 132 p.Google Scholar
Jordan, D. L. 2009b. Peanut weed management. Pages 5076 in 2009 Peanut Information. Raleigh, NC North Carolina Cooperative Extention Service AG-331. 132 p.Google Scholar
Jordan, D. L. and Johnson, P. D. 2010. Summary of peanut response to tillage in North Carolina from 1997–2009. Pages 39 in Proceedings of the 42nd American Peanut Research and Education Society Meeting. College Station, TX APRES.Google Scholar
Jordan, D. L., Barnes, J. S., Corbett, T., Bogle, C. R., Johnson, P. D., Shew, B. B., Koenning, S. R., Ye, W., and Brandenburg, R. L. 2008. Crop response to rotation and tillage in peanut-based cropping systems. Agron. J. 100:15801586.Google Scholar
Jordan, D. L., Bollich, P. K., Braverman, M. P., and Sanders, D. E. 1999. Influence of tillage and a Triticum aestivum cover crop on herbicide efficacy on Oryza sativa . Weed Sci. 47:332337.Google Scholar
Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2009. Cover crop residue management for optimizing weed control. Plant Soil 318:169184.Google Scholar
Liebl, R., Simmons, F. W., Wax, L. M., and Stoller, E. W. 1992. Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybean (Glycine max). Weed Technol. 6:838846.Google Scholar
Masiunas, J. B., Weston, L. A., and Weller, S. C. 1995. The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci. 43:318323.Google Scholar
Meijer, A. D. and Jordan, D. L. 2010. Soil facts: conservation tillage use in peanut production. Raleigh, NC North Carolina Cooperative Extension Service AG-439-73W. 4 p.Google Scholar
Mozingo, R. W., Coffelt, T. A., and Isleib, T. G. 2000. Registration of ‘VA 98R’ peanut. Crop Sci. 40:12021203.Google Scholar
Nagabhushana, G. G., Worsham, A. D., and Yenish, J. P. 2001. Allelopathic cover crops to reduce herbicide use in sustainable agricultural systems. Allelopathy J. 8:133146.Google Scholar
Price, A. J., Reeves, D. W., Patterson, M. G., Gamble, B. E., Balkcom, K. S., Arriaga, F. J., and Monks, C. D. 2007. Weed control in peanut grown in a high residue conservation-tillage system. Peanut Sci. 34:5964.Google Scholar
Price, A. J., Wilcut, J. W., and Swann, C. W. 2002. Weed management with diclosulam in peanut (Arachis hypogaea). Weed Technol. 16:724730.Google Scholar
Putnam, A. R. and Duke, W. O. 1978. Allelopathy in agroecosystems. Annu. Rev. Phytopathol. 16:431451.Google Scholar
Reddy, K. N. 2001. Effects of cereal and legume cover crop residues on weeds, yield, and net return in soybean (Glycine max). Weed Technol. 15:660668.Google Scholar
Shew, B. B. 2009. Peanut Disease Management: Pages 95120 in 2009 Peanut Information. Raleigh, NC North Carolina Cooperative Extension Service AG-331. 132 p.Google Scholar
Teasdale, J. R., Beste, C. E., and Potts, W. E. 1991. Response of weeds to tillage and cover crop residue. Weed Sci. 39:195199.Google Scholar
Tubbs, R. S. and Gallaher, R. N. 2005. Conservation tillage and herbicide management for two peanut cultivars. Agron. J. 97:500504.Google Scholar
Williams, E. J. and Drexler, J. S. 1981. A non-destructive method for determining peanut pod maturity, pericarp, mesocarp, color, morphology, and classification. Peanut Sci. 8:134141.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 10:815821.Google Scholar