Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T00:51:19.890Z Has data issue: false hasContentIssue false

The Influence of Adjusting Spray Solution pH on the Efficacy of Saflufenacil

Published online by Cambridge University Press:  20 January 2017

Jared M. Roskamp
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: wgj@purdue.edu

Abstract

Saflufenacil solubility and efficacy has been shown to be influenced by carrier water pH. This research was conducted to determine if altering the pH of a solution already containing saflufenacil would influence the efficacy of the herbicide. Saflufenacil at 25 g ai ha−1 was applied to field corn in carrier water with one of five initial pH levels (4.0, 5.2, 6.5, 7.7, or 9.0) and then buffered to one of four final solution pH levels (4.0, 6.5, 9.0, or none) for a total of twenty treatments. All treatments included ammonium sulfate at 20.37 g L−1 and methylated seed oil at 1% v/v. Generally, saflufenacil with a final solution pH of 6.5 or higher provided more dry weight reduction of corn than saflufenacil applied in a final pH of 5.2 or lower. When applying saflufenacil in water with an initial pH of 4.0 or 5.2, efficacy was increased by raising the final solution pH to either 6.5 or 9.0. Conversely, reduction in corn dry weight was less when solution pH of saflufenacil mixed in carrier water with an initial pH of 6.5 or 7.7 was lowered to a final pH of 4.0. When co-applying saflufenacil with herbicides that are very acidic, such as glyphosate, efficacy of saflufenacil may be reduced if solution pH is 5.2 or lower.

Se ha demostrado que la solubilidad y eficacia de saflufenacil son influenciadas por el pH del agua de aplicación. Esta investigación se realizó para determinar si al alterar el pH de una solución que ya contiene saflufenacil podría influir en la eficacia del herbicida. Se aplicó a maíz saflufenacil a 25 g ai ha−1 en agua con uno de cinco niveles de pH inicial (4.0, 5.2, 6.5, 7.7, ó 9.0) y luego se modificó el pH a uno de cuatro niveles de pH final (4.0, 6.5, 9.0, o ninguno), para un total de veinte tratamientos. Todos los tratamientos incluyeron ammonium sulfate a 20.37 g L−1 y aceite metilado de semilla a 1% v/v. Generalmente, saflufenacil con un pH de solución final de 6.5 o mayor brindó una reducción mayor de peso seco del maíz que saflufenacil aplicado a un pH final de 5.2 o menor. Cuando se aplicó saflufenacil en agua con un pH inicial de 4.0 ó 5.2, la eficacia se incrementó al aumentar el pH de la solución final a 6.5 ó 9.0. Contrariamente, la reducción en el peso seco del maíz fue menor cuando el pH de la solución de saflufenacil mezclado con agua con un pH inicial de 6.5 ó 7.7 fue disminuido a un pH final de 4.0. Cuando se co-aplica saflufenacil con herbicidas que son muy ácidos, tales como glyphosate, la eficacia de saflufenacil se podría ver reducida si el pH de la solución es 5.2 o menor.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, L.J., Elmore, R. W., Boyer, M. J., and Marlay, S. K. 2011. Corn growth and development. PMR 1009. Ext. Ames, IA Iowa State University Press. 12 p.Google Scholar
Anonymous. 2012. Sharpen™ herbicide product label. Research Triangle Park, NC 27709 BASF Corporation. 6 ppGoogle Scholar
Ashigh, J. and Hall, J. C. 2010. Bases for interactions between saflufenacil and glyphosate in plants. J. of Agric. and Food Chem. 58:73357343.Google Scholar
Buhler, D. D. and Burnside, O. C. 1983. Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci. 31:163169.Google Scholar
Chahal, G. S., Jordan, D. L., Burton, J. D., Danehower, D., York, A. C., Eure, P. M., and Clewis, B. 2012. Influence of water quality and co-applied agrochemicals on efficacy of glyphosate. Weed Technol. 26: 167176.Google Scholar
Green, J. M. and Cahill, W. R. 2003. Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Technol. 17:338345.Google Scholar
Green, J. M. and Hale, T. 2005. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 19:468475.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Roskamp, J. M. 2012. The influence of water pH, water hardness, and co-applied herbicides and fertilizers on the efficacy of selected herbicides. . West Lafayette, IN Purdue University Press. 105 p.Google Scholar
Sarmah, A. K. and Sabadie, J. 2002. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J. Agric. Food Chem. 50:62536265.Google Scholar
Stahlman, P. W. and Phillips, W. M. 1979. Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27:3841.Google Scholar
Starke, R. J. and Oliver, L. R. 1998. Interaction of Glyphosate with Chlorimuron, Fomesafen, Imazethapyr, and Sulfentrazone, Weed Sci. 46:652660.Google Scholar
Stirling, T. M. 1994. Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells. Weed Sci. 42:263276.Google Scholar
[US-EPA] U. S. Environmenal Protection Agency. 2009. Pesticide Fact Sheet, Saflufenacil. http://fls.cals.cornell.edu/OCRPDF/118.pdf. Accessed: June 29, 2012.Google Scholar