Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T20:34:34.577Z Has data issue: false hasContentIssue false

Indaziflam Enhances Buckhorn Plantain (Plantago lanceolata) Control from Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
Christopher R. Johnston
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
Thomas V. Reed
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
Jialin Yu
Affiliation:
Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
*
Corresponding author's E-mail: pmccull@uga.edu.

Abstract

Buckhorn plantain is a perennial weed in turfgrass and efficacy of POST herbicides is often inconsistent for control in spring. Indaziflam is a cellulose biosynthesis inhibitor used for PRE control of annual weeds in turf and applications have shown to be injurious to established buckhorn plantain. The objectives of this research were to evaluate (1) effects of indaziflam application rate and placement on buckhorn plantain injury; (2) effects of tank-mixing indaziflam with POST herbicides for buckhorn plantain control; and (3) physiological effects of indaziflam on absorption and translocation of 14C-2,4-D in buckhorn plantain. In greenhouse experiments, indaziflam reduced buckhorn plantain shoot mass 61 to 75% from the nontreated at 4 wk after treatment (WAT) and hierarchical rank of application placements were: foliar + soil ≥ soil ≥ foliar. Differences in biomass reduction from application rates (27.5 and 55 g ai ha−1) were not detected. In field experiments, indaziflam at 55 g ha−1 controlled buckhorn plantain 34% at 9 WAT but enhanced the speed of control from all herbicides tested in tank mixtures. Exclusive applications of 2,4-D or 2,4-D + dicamba + MCPP provided poor control (< 70%) of buckhorn plantain at 9 WAT, but tank mixtures with indaziflam provided 81 and 98% control, respectively. Fluroxypyr and simazine alone controlled buckhorn plantain < 38% but tank mixtures with indaziflam enhanced control more than twice as much from exclusive applications. Tank-mixing indaziflam with metsulfuron did not improve control from metsulfuron alone after 9 wk. Bermudagrass injury was not detected from any treatment. In laboratory experiments, 14C-2,4-D absorption and translocation in buckhorn plantain was similar with or without indaziflam tank mixtures at 72 and 168 h after treatment. Overall, indaziflam may improve buckhorn plantain control from POST herbicides by providing additive phytotoxicity in tank mixtures in spring.

Plantago lanceolata es una maleza perenne en céspedes y la eficacia de herbicidas POST es comúnmente inconsistente para su control en la primavera. Indaziflam es un inhibidor de la biosíntesis de cellulose usado para el control PRE de malezas anuales en césped y su aplicación ha demostrado ser dañina para plantas establecidas de P. lanceolata. Los objetivos de esta investigación fueron evaluar (1) los efectos de la dosis y lugar de aplicación de indaziflam sobre el daño de P. lanceolata; (2) los efectos de mezclar en tanque indaziflam con herbicidas POST para el control de P. lanceolata; y (3) los efectos fisiológicos de indaziflam en la absorción y translocación de 14C-2,4-D en P. lanceolata. En experimentos de invernadero, indaziflam redujo la masa de tejido aéreo de P. lanceolata 61 a 75% en comparación al testigo no-tratado a 4 semanas después del tratamiento (WAT) y el ranking jerárquico del lugar de aplicación fue: foliar + suelo ≥ suelo ≥ foliar. No se detectaron diferencias en la reducción de biomasa según la dosis de aplicación (27.5 y 44 g ai ha−1). En los experimentos de campo, indaziflam a 55 g ha−1 controló P. lanceolata 34% a 9 WAT, pero mejoró la velocidad de control de todos los herbicidas evaluados en mezclas en tanque. Aplicaciones exclusivas de 2,4-D o 2,4-D + dicamba + MCPP brindaron un control pobre (<70%) de P. lanceolata a 9 WAT, pero las mezclas en tanque con indaziflam brindaron 81 a 98% de control, respectivamente. Fluroxypyr y simazine solos controlaron P. lanceolata <38%, pero las mezclas en tanque con indaziflam mejoraron el control en más del doble en comparación con las aplicaciones solas. El mezclar en tanque indaziflam con metsulfuron no mejoró el control en comparación con metsulfuron solo a 9 WAT. No se detectó daño en Cynodon dactylon con ninguno de los tratamientos. En los experimentos de laboratorio, la absorción y translocación de 14C-2,4-D en P. lanceolata fue similar con o sin mezclas en tanque con indaziflam a 72 y 168 h después del tratamiento. En general, indaziflam mejoró el control de P. lanceolata con herbicidas POST al brindar una fitotoxicidad aditiva en las mezclas en tanque en la primavera.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agbakoba, CSO, Goodin, JR (1970a) Picloram enhances 2,4-D movement in field bindweed. Weed Sci 18:1921 Google Scholar
Agbakoba, CSO, Goodin, JR (1970b) Absorption and translocation of 14C-labeled 2,4-D and picloram in field bindweed. Weed Sci 18:168170 Google Scholar
Anonymous (2013) Specticle flo. Bayer Environmental Science, Research Triangle Park, NC 27709. p 7 Google Scholar
Brosnan, JT, Breeden, GK (2012) Application placement affects postemergence smooth crabgrass (Digitaria ischaemum) and annual bluegrass (Poa annua) control with indaziflam. Weed Technol 26:661665 Google Scholar
Cavers, PB, Bassett, IJ, Crompton, CW (1980) The biology of Canadian weeds: Plantago lanceolata L. Can J Plant Sci 60:12691282 Google Scholar
Hammer, CL, Tukey, HB (1944) Selective herbicidal action of midsummer and fall applications of 2,4-dichlorophenoxyacetic acid. Bot Gaz 106:232245 Google Scholar
Hammerton, JL (1967) Environmental factors and susceptibility to herbicides. Weeds 15:330336 Google Scholar
Hoveland, CS, Buchanan, GA, Harris, MC (1976) Response of weeds to soil phosphorous and potassium. Weed Sci 24:194201 Google Scholar
Jhala, AJ, Ramirez, HM, Singh, M (2013) Tank mixing saflufenacil, glufosinate, and indaziflam improved burndown and residual weed control. Weed Technol 27:422429 Google Scholar
Jursik, M, Holec, M, Soukup, J, Tyser, L (2009) Biology and control of another important weed of the Czech Republic: species of genus Plantain–Plantago L. Listy Cukrovarnické a Řepařské 125:157159 Google Scholar
Kaapro, J, Hall, J (2012) Indaziflam—a new herbicide for pre-emergent control of weeds in turf, forestry, industrial vegetation and ornamentals. Pak J Weed Sci Res 18:267270 Google Scholar
Kelly, S (1949) The effect of temperature on the susceptibility of plants to 2,4–D. Plant Physiol 24:534536 Google Scholar
Kozlowski, TT, Sasaki, S, Torrie, JH (1967) Influence of temperature on phytotoxicity of triazine herbicides to pine seedlings. Am J Bot 54:790796 Google Scholar
Marble, SC, Gilliam, CH, Wehtje, GR, Samuel-Foo, M (2013) Early postemergence control of yellow woodsorrel (Oxalis stricta) with residual herbicides. Weed Technol 27:347351 Google Scholar
McCullough, PE, Yu, J, Gomez de Barreda, D (2013) Efficacy of preemergence herbicides for controlling a dinitroaniline resistant goosegrass in Georgia. Weed Technol 27:639644 Google Scholar
Olson, BD, Hall, AB (1988) Postemergence broadleaf weed control in turf with non-phenoxy herbicide combinations. Proc Northeast Weed Sci Soc 42:185186 Google Scholar
Pallas, JE (1960) Effects of temperature and humidity on foliar absorption and translocation of 2,4-dichlorophenoxyacetic acid and benzoic acid. Plant Physiol 35:575580 CrossRefGoogle Scholar
Perry, DH, McElroy, JS, Doroh, MC, Walker, RH (2011) Indaziflam utilization for controlling problematic turfgrass weeds. Online. Appl Turfgrass Sci DOI: Google Scholar
Ransom, JK, Oelke, EA, Wyse, DL (1983) Behavior of 2,4-D in common waterplain (Alisma triviale). Weed Sci 31:766770 Google Scholar
Tieszen, LL (1970) The effects of simazine and temperature on photosynthesis in rye. Plant Physiol 46:442444 Google Scholar
Wehtje, GE, Gilliam, CH, Millar, ME, Altland, JE (2006) Foliar vs. root sensitivity of hairy bittercress (Cardamine hirsuta) to isoxaben. Weed Technol 20:326333 Google Scholar
Wyrill, JB, Burnside, OC (1976) Absorption, translocation, and metabolism of 2,4-D and glyphosate in common milkweed and hemp dogbane. Weed Sci 24:557566 Google Scholar