Skip to main content Accessibility help

Giant Ragweed (Ambrosia trifida) Seed Production and Retention in Soybean and Field Margins

  • Jared J. Goplen (a1), Craig C. Sheaffer (a1), Roger L. Becker (a1), Jeffrey A. Coulter (a1), Fritz R. Breitenbach (a2), Lisa M. Behnken (a2), Gregg A. Johnson (a1) and Jeffrey L. Gunsolus (a1)...


As herbicide-resistant weed populations become increasingly problematic in crop production, alternative strategies of weed control are necessary. Giant ragweed, one of the most competitive agricultural weeds in row crops, has evolved resistance to multiple herbicide biochemical sites of action within the plant, necessitating the development of new and integrated methods of weed control. This study assessed the quantity and duration of seed retention of giant ragweed grown in soybean fields and adjacent field margins. Seed retention of giant ragweed was monitored weekly during the 2012 to 2014 harvest seasons using seed collection traps. Giant ragweed plants produced an average of 1,818 seeds per plant, with 66% being potentially viable. Giant ragweed on average began shattering hard (potentially viable) and soft (nonviable) seeds September 12 and continued through October at an average rate of 0.75 and 0.44% of total seeds per day during September and October, respectively. Giant ragweed seeds remained on the plants well into the Minnesota soybean harvest season, with an average of 80% of the total seeds being retained on October 11, when Minnesota soybean harvest was approximately 75% completed in the years of the study. These results suggest that there is a sufficient amount of time to remove escaped giant ragweed from production fields and field margins before the seeds shatter by managing weed seed dispersal before or at crop harvest. Controlling weed seed dispersal has potential to manage herbicide-resistant giant ragweed by limiting replenishment of the weed seed bank.

Conforme las poblaciones de malezas resistentes a herbicidas se hacen incrementalmente más problemáticas en la producción de cultivos, estrategias alternativas de control de malezas se hacen cada vez más necesarias. Ambrosia trifida, una de las malezas agrícolas más competitivas en cultivos en hileras, ha evolucionado resistencia a múltiples sitios bioquímicos de acción de herbicidas dentro de la planta, lo que ha hecho necesario el desarrollo de métodos nuevos e integrados de control de malezas. Este estudio evaluó la cantidad y duración de la retención de semilla de A. trifida creciendo en campos de soja y márgenes de campos adyacentes. La retención de semilla de A. trifida fue monitoreada semanalmente durante las temporadas de cosecha desde 2012 a 2014 usando trampas de colección de semilla. Las plantas de A. trifida produjeron un promedio de 1,818 semillas por planta, con una viabilidad potencial de 66%. En promedio, A. trifida inició la dispersión de semilla dura (potencialmente viable) y suave (no-viable) el 12 de Septiembre y continuó durante Octubre, con una tasa promedio de 0.75 y 0.44% del total de semillas por día, durante Septiembre y Octubre, respectivamente. Las semillas de A. trifida permanecieron en las plantas hasta la temporada de cosecha de soja en Minnesota, con un promedio de 80% del total de las semillas estando retenidas al 11 de Octubre, cuando la cosecha de soja en Minnesota había sido completada al 75%, en los años de este estudio. Estos resultados sugieren que existe una cantidad de tiempo suficiente para remover A. trifida que haya escapado al control en campos de producción y en márgenes de campos antes de que la semilla sea liberada de la planta, mediante el manejo de la dispersión de semilla de malezas antes o durante la cosecha. El controlar la dispersión de semillas de malezas tiene el potencial de manejar A. trifida resistente a herbicidas al limitar el suministro de nuevas semillas al banco de semillas de malezas.


Corresponding author

Corresponding author's E-mail:


Hide All
Abul-Fati, HA, Bazzaz, FA, Hunt, R (1979) The biology of Ambrosia trifida L. III. Growth and biomass allocation. New Phytol 83:829838
Amatangelo, J (1974) Infestation of seeds of Ambrosia trifida, giant ragweed, by larval insects. Bios 45:1518
Ball, DA, Miller, SD (1989) A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res 29:365373
Barroso, J, Navarrete, L, Sánchez del Arco, MJ, Fernandez-Quintanilla, C, Lutman, PJW, Perry, NH, Hull, RI (2006) Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res 46:118128
Bassett, IJ, Crompton, CW (1982) The biology of Canadian weeds. 55. Ambrosia trifida L. Can J Plant Sci 62:10021010
Baysinger, JA, Sims, BD (1992) Giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol 6:1318
Blanco-Moreno, JM, Chamorro, L, Masalles, RM, Recasens, J, Sans, FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375387
Brabham, CB, Gerber, CK, Johnson, WG (2011) Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in the presence and absence of glyphosate. Weed Sci 59:506511
Cardina, J, Sparrow, DH (1996) A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Sci 44:4651
Fenner, M (1995) Ecology of seed banks. Pages 507528 in Kigel, J and Galili, G, eds. Seed Development and Germination. New York: Marcel Dekker
Forcella, F (1992) Prediction of weed seedling densities from buried seed reserves. Weed Res 32:2938
Harrison, SK, Regnier, EE, Schmoll, JT, Webb, JE (2001) Competition and fecundity of giant ragweed in corn. Weed Sci 49:224229
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. Accessed March 16, 2015
Jurik, TW (1991) Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87:539550
Mann, LK (1942) Effects of photoperiod on sex expression in Ambrosia trifida . Bot Gaz 103:780787
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62:237249
Page, MJ, Newlands, L, Eales, J (2002) Effectiveness of three seed-trap designs. Aust J Bot 50:587594
Rew, LJ, Froud-Williams, RJ, Boatman, ND (1996) Dispersal of Bromus sterilis and Anthriscus sylvestris seed within arable field margins. Agric Ecosyst Environ 59:107114
Shaner, DL, Beckie, HJ (2014) The future of weed control and technology. Pest Manag Sci 70:13291339
Shirtliffe, SJ, Entz, MH (2005) Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci 53:465470
Shirtliffe, SJ, Entz, MH, Van Acker, RC (2000) Avena fatua development and seed shatter as related to thermal time. Weed Sci 48:555560
Stoller, EW, Harrison, SK, Wax, LM, Regnier, EE, Nafziger, ED (1987) Weed interference in soybeans (Glycine max). Rev Weed Sci 3:155181
Taghizadeh, MS, Nicolas, ME, Cousens, RD (2012) Effects of relative emergence time and water deficit on the timing of fruit dispersal in Raphanus raphanistrum L. Crop Pasture Sci 63:10181025
[USDA-NASS] U.S. Department of Agriculture National Agriculture Statistics Service (2010) Field Crops Usual Planting and Harvesting Dates (October 2010). Washington, DC: U.S. Department of Agriculture. p 41
[USDA-NASS] U.S. Department of Agriculture National Agriculture Statistics Service (2014) Minnesota Crop Progress. Accessed December 14, 2014
Vitolo, DB, Stiles, EW (1987) The effect of density of Ambrosia trifida L. on seed predation by Euaresta festiva (Loew) (Dipera: Tephritidae). J N Y Entomol Soc 95:491494
Walsh, MJ, Harrington, RB, Powles, SB (2012) Harrington seed destructor: a new nonchemical weed control tool for global grain crops. Crop Sci 52:13431347
Walsh, MJ, Newman, P (2007) Burning narrow windrows for weed seed destruction. Field Crop Res 104:2430
Walsh, MJ, Newman, P, Powles, SB (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338
Walsh, MJ, Powles, SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486493
Webster, TM, Loux, MM, Regnier, EE, Harrison, SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559564



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed