Skip to main content Accessibility help

Flufenacet and Isoxaflutole Combinations for Weed Control and Corn (Zea mays) Tolerance

  • W. James Grichar (a1), Brent A. Besler (a1) and Drew T. Palrang (a2)


Field studies were conducted in 1999 and 2000 at seven locations in south Texas to evaluate flufenacet plus isoxaflutole for weed control and corn tolerance. Palmer amaranth control with flufenacent plus isoxaflutole was variable, with no greater than 60% control at one location and greater than 95% control at another. The poor control at the one location was probably due to lack of rainfall for 3 to 4 wk after corn was planted. Flufenacet plus isoxaflutole at 0.56 or 0.7 kg/ha controlled Texas panicum at least 80%, whereas flufenacet plus isoxaflutole rates lower than 0.56 kg/ha provided variable control (55 to 99%). Flufenacet plus isoxaflutole at 0.35 and 0.49 kg/ha controlled pitted morningglory at least 83%. Corn stunting (3 to 16%) with flufenacet plus isoxaflutole was noted at the one location where the soil sand content was greater than 80% and moisture was received within 48 h of herbicide application. With few exceptions, corn weed control and yield with flufenacet plus isoxaflutole combinations were generally comparable to those observed for the atrazine and acetochlor standard treatments.


Corresponding author

Corresponding author's E-mail:


Hide All
Behrens, R. 1975. Corn and weeds. Weeds Today 6:1518.
Bhowmik, P. C. and Prostak, R. G. 1996. Activity of EXP 31130A in annual weed control in field corn. Weed Sci. Soc. Am. Abstr. 36:13.
Bosnic, A. C. and Swanton, C. J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.
Brown, D. and Masiunas, J. 2002. Evaluation of herbicides for pumpkin (Curcurbia spp). Weed Technol. 16:282292.
Carey, J. B. and Kells, J. J. 1995. Timing of total postemergence herbicide applications to maximize weed control and corn (Zea mays) yield. Weed Technol. 9:356361.
Fausey, J. C., Kells, J. J., Swinton, S. M., and Renner, K. A. 1997. Giant foxtail (Setaria faberi) interference in nonirrigated corn (Zea mays). Weed Sci. 45:256260.
Grichar, W. J., Besler, B. A., Brewer, K. D., and Palrang, D. T. 2003. Flufenacet and metribuzin combinations for weed control and corn (Zea mays) tolerance. Weed Technol. 17:346351.
Hatzois, K. K. ed. 1998. Herbicide Handbook Supplement. 7th ed. Lawrence, KS: Weed Science Society of America. Pp. 69.
Hopkins, J. A., Donaldson, F. S., Komm, D. A., Palrang, A. T., Rudolph, R. D., and Bloomberg, J. R. 1998. Performance of Axiom in field corn in the southern United States. Proc. South. Weed Sci. Soc. 51:223224.
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol. 14:5765.
Johnson, G. A. and Hoverstad, T. R. 2002. Effect of row spacing and herbicide application timing on weed control and grain yield in corn (Zea mays). Weed Technol. 16:548553.
Knezevic, S. V., Weise, S. F., and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci. 42:568573.
Lee, D. L., Prisbylla, M. P., Cromartie, T. H., Dagarin, D. P., Howard, S. W., Provan, W. M., Ellis, M. K., Fraser, T., and Mutter, L. C. 1997. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenases. Weed Sci. 45:601609.
Pallett, K. E., Cramp, S. M., Little, J. P., Veerasedaran, P., Crudace, A. J., and Slater, A. E. 2001. Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 57:133142.
Pallett, K. E., Little, J. P., Skeekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole. I. Physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62:113124.
Pflanzenschultz-Nachrichten, Bayer 1997. Special issue on BAY FOE 5043. 50:101194.
Prostko, E. P., Johnson, W. C. III, and Mullinix, B. G. Jr. 2001. Annual grass control with preplant incorporated and preemergence applications of ethalfluralin and pendimethalin in peanut. Weed Technol. 15:3641.
Ross, M. A. and Lembi, C. A. 1999. Herbicide incorporation techniques and equipment. in Stewart, C., Stagman, J., and Garnis, M., eds. Applied Weed Science. 2nd ed. Upper Saddle River, NJ: Prentice-Hall. Pp. 371375.
Rowe, L. and Penner, D. 1990. Factors affecting chloroacetanilide injury to corn. Weed Technol. 4:904906.
Smith, D. T. and Anisco, J. 2000. Corn in Texas. Web page: Accessed: April 25, 2004.
Sprague, C. L., Kells, J. J., and Penner, D. 1999a. Weed control and corn (Zea mays) tolerance from soil-applied RPA 201772. Weed Technol. 13:713725.
Sprague, C. L., Kells, J. J., and Penner, D. 1999b. Enhancing margin of selectivity of RPA 201772 in corn (Zea mays) with antidotes. Weed Sci. 47:492497.
Sprague, C. L., Kells, J. J., and Penner, D. 1999c. Physiological basis for differential corn (Zea mays) tolerances of four corn hybrids to isoxaflutole. Weed Sci. 47:631635.
Steckel, L. E., Simmons, F. W., and Sprague, C. L. 2003. Soil factor effects on tolerance of two corn (Zea mays) hybrids to isoxaflutole plus flufenacet. Weed Technol. 17:599604.
Vizantinopoulos, S. and Katranis, N. 1998. Weed management of Amaranthus spp. in corn (Zea mays). Weed Technol. 12:145150.
Young, F. L., Wyse, D. L., and Jones, R. J. 1984. Quackgrass (Agropyron repens) interference on corn (Zea mays). Weed Sci. 32:226234.
Zimdahl, R. L. 1980. Weed-crop competition. A review. Corvallis, OR: International Plant Protection Center, Oregon State University. Pp. 4649.


Related content

Powered by UNSILO

Flufenacet and Isoxaflutole Combinations for Weed Control and Corn (Zea mays) Tolerance

  • W. James Grichar (a1), Brent A. Besler (a1) and Drew T. Palrang (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.