Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T02:07:05.542Z Has data issue: false hasContentIssue false

Field Evaluation of Auxin Herbicide Volatility Using Cotton and Tomato as Bioassay Crops

Published online by Cambridge University Press:  20 January 2017

Matthew J. Bauerle
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
James L. Griffin*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Jason L. Alford
Affiliation:
Helena Chemical Company, Collierville, TN 38017
Albert B. Curry III
Affiliation:
Helena Chemical Company, Collierville, TN 38017
Michael M. Kenty
Affiliation:
Helena Chemical Company, Collierville, TN 38017
*
Corresponding author's E-mail: jgriffin@agcenter.lsu.edu.

Abstract

Research was conducted to compare cotton and tomato response to volatility of 2,4-D, dicamba, and triclopyr formulations. Herbicide treatments were applied to tilled soil during August and September, and potted plants were placed in the center of treated strips. To quantify injury, leaf cupping/crinkling/drooping; leaf rolling/strapping; stem epinasty; and stem swelling/cracking were each visually rated on an injury scale of 0 to 5 (0 = none, 1 = slight, 2 = slight to moderate, 3 = moderate, 4 = moderate to severe, and 5 = severe). Leaf cupping/crinkling/drooping injury averaged across herbicide treatments at 1× rates was 1.0 for cotton and 2.0 for tomato 14 d after treatment (DAT). Averaged across crops, leaf cupping/crinkling/drooping injury for the 1× rates 14 DAT was equivalent for the 2,4-D dimethylamine (DMA) salt, 2,4-D acid, dicamba DMA salt, dicamba diglycolamine (DGA) salt, dicamba acid, and triclopyr acid formulations and ranged from 1.1 to 1.8. For tomato, the only herbicide treatments with injury 14 DAT no greater than for the nontreated were 1× rates of 2,4-D DMA and 2,4-D acid for leaf rolling/strapping (1.0); 2,4-D acid, dicamba DMA, dicamba acid, and triclopyr acid for stem epinasty (0.3 to 0.7); and 2,4-D DMA, 2,4-D acid, dicamba DMA, dicamba DGA, dicamba acid, and triclopyr acid for stem swelling/cracking (0.1 to 0.2). A weighted factor assigned to each injury criterion provided an overall total injury estimate of 0 to 100%. When applied at 1× rates, total injury for 2,4-D isooctyl ester was 10% for cotton and 36% for tomato and for triclopyr butoxyethyl ester was 11% for cotton and 50% for tomato. For the 2,4-D DMA, 2,4-D acid, dicamba DMA, dicamba DGA, dicamba acid, and triclopyr acid formulations, total injury was 4 to 8% for cotton and 20 to 24% for tomato, and for both crops, injury was no greater than for the nontreated.

Se realizó una investigación para comparar la respuesta del algodón y el tomate a la volatilidad de formulaciones de 2,4-D, dicamba, y triclopyr. Los tratamientos de herbicidas fueron aplicados durante Agosto y Septiembre, a suelo labrado, y plantas en potes fueron puestas en el centro de las franjas tratadas con el herbicida. Para cuantificar el daño, se evaluó visualmente el acucharamiento/arrugamiento/caída de las hojas, el enrollamiento de las hojas, la epinastia del tallo, y el engrosamiento/aparición de fisuras en el tallo, usando una escala de daño para cada variable de 0 a 5 (0 = nada, 1 = poco, 2 = poco a moderado, 3 = moderado, 4 = moderado a severo, y 5 = severo). El daño acucharamiento/arrugamiento/caída de hojas promediando los tratamientos de herbicidas a dosis de 1× fue 1.0 para algodón y 2.0 para tomate 14 d después del tratamiento (DAT). Promediando los cultivos, este mismo tipo de daño para dosis de 1× 14 DAT, fue equivalente para las formulaciones de sal de 2,4-D dimethylamine (DMA), ácido de 2,4-D, sal de dicamba DMA, sal de dicamba diglycolamine (DGA), ácido de dicamba, y ácido de triclopyr, y varió entre 1.1 y 1.8. En el tomate, los únicos tratamientos de herbicidas que tuvieron un daño que no fue mayor al testigo sin tratamiento a 14 DAT, fueron dosis 1× de 2,4-D DMA y ácido de 2,4-D, para el daño de enrollamiento de hojas (1.0); ácido de 2,4-D, dicamba DMA, ácido de dicamba, y ácido de triclopyr, para el daño de epinastia de tallo (0.3 a 0.7); y 2,4-D DMA, ácido de 2,4-D, dicamba DMA, dicamba DGA, ácido de dicamba, y ácido de triclopyr para el daño de engrosamiento del tallo (0.1 a 0.2). Un factor ponderado asignado para cada criterio de daño brindó un estimado general del total de daño de 0 a 100%. Cuando se aplicó la dosis de 1×, el daño total de 2,4-D isooctyl ester fue 10% para algodón y 36% para tomate, y para triclopyr butoxyethyl ester fue 11% para algodón y 50% para tomate. Para las formulaciones de 2,4-D DMA, ácido de 2,4-D, dicamba DMA, dicamba DGA, ácido de dicamba, y ácido de triclopyr, el daño total fue 4 a 8% para algodón y 20 a 24% para tomate, y para ambos cultivos, el daño no fue superior al del testigo sin tratamiento.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnevik, CL., Feng, P, DeVries, M, Lubbers, M, Cordes, J, Herren, D, Mohanty, R (2014) Crop response to dicamba applications to soybean event 87708. Page 189 in Proceedings of the 67th Annual Meeting of the Southern Weed Science Society, Birmingham, AL: SWSS Google Scholar
Baur, JR, Bovey, RW, McCall, HG (1973) Thermal and ultraviolet loss of herbicides. Arch Environ Contam Toxicol 1:289302 Google Scholar
Behrens, R, Lueschen, WE (1979) Dicamba volatility. Weed Sci 27:486493 Google Scholar
Burnside, OC, Lavy, TL (1966). Dissipation of dicamba. Weeds 14:211214 Google Scholar
Derksen, DA (1989) Dicamba, chlorsulfuron, and clopyralid as sprayer contaminants on sunflower (Helianthus annuus), mustard (Brassica juncea), and lentil (Lens culinaris), respectively. Weed Sci 37:616621 Google Scholar
Egan, JF, Mortensen, DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environ Toxicol Chem 31:10231031 Google Scholar
Griffin, JL, Bauerle, MJ, Stephenson, DO 4th, Miller, DK, Boudreaux, JM (2013) Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technol 27:696703 Google Scholar
Hatterman-Valenti, H, Owen, MDK, Christians, NE (1995) Comparison of spray drift during postemergence herbicide applications to turfgrass. Weed Technol 9:321325 Google Scholar
Hayden, CA, Reynolds, DB, Eytcheson, AN, Walton, LC, Perry, DH (2013) A comparison of auxin herbicide volatility when applied under field condition. Page 118 in Proceedings of the 66th Annual Meeting of the Southern Weed Science Society, Houston, TX: SWSS Google Scholar
Hayden, CA, Reynolds, DB, Hemminghaus, JW, MacInnis, A (2014) The effect of formulation of dicamba volatility when applied under field conditions. Page 120 in Proceedings of the 67th Annual Meeting of the Southern Weed Science Society, Birmingham, AL: SWSS Google Scholar
Heap, I. 2014. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed June 24, 2014Google Scholar
Johnson, VA, Fisher, LR, Jordan, DL, Edmisten, KE, Stewart, AM, York, AC (2012) Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26:195206 Google Scholar
MacInnis, A, Sandbrink, JJ, Hemminghaus, J, Travers, JN, Seifert-Higgins, S, Curvey, SE (2014) Dicamba formulation advancements. Page 220 in Proceedings of the 67th Annual Meeting of the Southern Weed Science Society, Birmingham, AL: SWSS Google Scholar
Perry, DH, Braxton, B, Ellis, AT, Haygood, RA, Lassiter, RB, Richburg, JS, Walton, LC (2013) Evaluating differential volatility of auxin-type herbicides utilizing novel field methodology. Page 79 in Proceedings of the 66th Annual Meeting of the Southern Weed Science Society, Houston, TX: SWSS Google Scholar
Que Hee SS, Sutherland RG (1974) Volatilization of various esters and salts of 2,4D. Weed Sci 22:313–318Google Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc. Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International Meeting. Nashville, TN: SAS Institute Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004a) Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18:11251134 Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004b) Determining exposure to auxin-like herbicides. II. Practical application to quantify volatility. Weed Technol 18:11351142 Google Scholar
Skelton, JJ, Simpson, DM, Lygin, AV, Riechers, DE (2014) Metabolic fate of 2,4-D in Enlist Soybeans. Abstract 356 in Proceedings of the Annual Meeting of the Weed Science Society of America. Lawrence, KS: WSSA Google Scholar
Sosnoskie, LM, Culpepper, AS, Braxton, B, Richburg, JS (2012) Comparing volatility of three forms of 2,4-D when applied in the field. Abstract 333 in Proceedings of the Annual Meeting of the Weed Science Society of America. Lawrence, KS: WSSA Google Scholar
Xu, W, Cannan, TM, Finch, CW, Schnabel, G, Bratz, M, Bowe, SJ, Brommer, CL (2012). Advancements in dicamba formulations. Abstract 329 in Proceedings of the Annual Meeting of the Weed Science Society of America. Lawrence, KS: WSSA Google Scholar