Skip to main content Accessibility help
×
Home

Evaluation of Herbicide Timings for Palmer Amaranth Control in a Stale Seedbed Sweetpotato Production System

  • Lauren B. Coleman (a1), Sushila Chaudhari (a2), Katherine M. Jennings (a1), Jonathan R. Schultheis (a1), Stephen L. Meyers (a3) and David W. Monks (a1)...

Abstract

Studies were conducted in a stale field production system in 2012 and 2013 to determine the effect of herbicide timing on Palmer amaranth control and ‘Covington’ sweetpotato yield and quality. Treatments consisted of flumioxazin at 72, 90, or 109 g ai ha−1 applied 45 d before transplanting (DBT) or 1 DBT, or sequentially the same rate at 45 DBT followed by (fb) 1 DBT; flumioxazin 109 g ha−1 applied 1 DBT fb S-metolachlor (800 g ai ha−1) at 0, 6 (± 1), or 10 d after treatment (DAT); flumioxazin at 72, 90, or 109 g ha−1 plus clomazone (630 g ai ha−1) applied 45 DBT fb S-metolachlor (800 g ha−1) applied 10 DAT; and fomesafen alone at 280 g ai ha−1 applied 45 DBT. Nontreated weed-free and weedy controls were included for comparison. Flumioxazin application time had a significant effect on Palmer amaranth control and sweetpotato yields, and the effect of flumioxazin rate was not significant. Treatments consisting of sequential application of flumioxazin 45 DBT fb 1 DBT or flumioxazin plus clomazone 45 DBT fb S-metolachlor 10 DAT provided the maximum Palmer amaranth control and sweetpotato yields (jumbo, No. 1, jumbo plus No. 1, marketable) among all treatments. Delayed flumioxazin application timings until 1 DBT allowed Palmer amaranth emergence on stale seedbeds and resulted only in 65, 62, 48, and 17% control at 14, 32, 68, and 109 DAT, respectively. POST transplant S-metolachlor applications following flumioxazin 1 DBT did not improve Palmer amaranth control, because the majority of Palmer amaranth emerged prior to S-metolachlor application. A control program consisting of flumioxazin 109 g ha−1 plus clomazone 630 g ha−1 at 45 DBT fb S-metolachlor 800 g ha−1 at 0 to 10 DAT provides an effective herbicide program for Palmer amaranth control in stale seedbed production systems in North Carolina sweetpotato.

En 2012 y 2013, se realizaron estudios en el sistema de producción en campo con siembra retrasada para determinar el efecto del momento de aplicación de herbicidas sobre el control de A. palmeri y el rendimiento y calidad de la batata ‘Covington’. Los tratamientos consistieron de flumioxazin a 72, 90, ó 109 g ai ha−1 aplicados 45 d antes del trasplante (DBT) o 1 DBT, o secuencialmente con la misma dosis a 45 DBT seguido por (fb) 1 DBT; flumioxazin 109 g ha−1 aplicados 1 DBT fb S-metolachlor (800 g ai ha−1) a 0, 6 (±1), ó 10 d después del tratamiento (DAT); flumioxazin a 72, 90, ó 109 g ha−1 más clomazone (630 g ai ha−1) aplicado 45 DBT fb S-metolachlor (800 g ha−1) aplicado 10 DAT; y fomesafen solo a 280 g ai ha−1 aplicado 45 DBT. Testigos sin tratamiento con y sin malezas fueron incluidos para fines de comparación. El momento de aplicación de flumioxazin tuvo un efecto significativo sobre el control de A. palmeri y los rendimientos de la batata, pero el efecto de la dosis de flumioxazin no fue significativo. Los tratamientos que consistían de aplicaciones secuenciales de flumioxazin 45 DBT fb 1 DBT o flumioxazin más clomazone 45 DBT fb S-metolachlor 10 DAT brindaron el máximo control de A. palmeri y los mayores rendimientos (jumbo, No. 1, jumbo plus No. 1, comercializable) entre todos los tratamientos. El retrasar el momento de aplicación de flumioxazin hasta 1 DBT permitió la emergencia de A. palmeri en las camas de siembra y resultó solamente en 65, 62, 48, y 17% de control a 14, 32, 68, y 109 DAT, respectivamente. Las aplicaciones POST trasplante de S-metolachlor después de flumioxazin 1 DBT no mejoraron el control de A. palmeri, porque la mayoría de las plantas de esta maleza emergieron antes de la aplicación de S-metolachlor. Un programa de control que consista de flumioxazin 109 g ha−1 más clomazone 630 g ha−1 a 45 DBT fb S-metolachlor 800 g ha−1 a 0 a 10 DAT brinda un programa efectivo de control de A. palmeri en sistemas de producción de siembra retrasada en camas de batata en North Carolina.

Copyright

Corresponding author

Corresponding author's E-mail: schaudh@nsu.edu

Footnotes

Hide All
Associate editor for this paper: W. Carroll Johnson III, USDA-ARS.

Footnotes

References

Hide All
Anonymous (2013) Dual Magnum® herbicide label. Greensboro, NC: Syngenta Crop Protection, Inc.
Barkley, SL, Chaudhari, S, Jennings, KM, Schultheis, JR, Meyers, SL, Monks, DW (2016) Fomesafen programs for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. In press
Boyd, NS, Brennan, EB, Fennimore, SA (2006) Stale seedbed techniques for organic vegetable production. Weed Technol 20: 10521057
Caldwell, B, Mohler, CL (2001) Stale seedbed practices for vegetable production. HortScience 36: 703705
Haley, J, Curtis, J (2006) Sweetpotato grower survey report of results for 2005 crop. Report for USDA CSREES grant: Risk Avoidance and Mitigation Program (RAMP): Development of grower decision management tools to reduce risk and enhance sustainability of Southern sweetpotato pest management systems
Heap, IM (2013) The occurrence of herbicide-resistant weeds worldwide. In International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed October 2013
Heatherly, LG, Wesley, RA, Elmore, CD, Spurlock, SR (1993) Net returns from stale seedbed plantings of soybean (Glycine max) on clay soil. Weed Technol 7: 972980
Hobbs, PR, Sayre, K, Gupta, R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Ser B 363: 543555
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48: 347355
Huaman, Z (1992) Systematic botany and morphology of the sweetpotato plant. Technical Information Bulletin 25. Lima, Peru: International Potato Center
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57: 644651
Johnson, WC III Mullinix, BG Jr (1995) Weed management in peanut using stale seedbed techniques. Weed Sci 43: 293297
Kassam, A, Friedrich, T, Shaxson, F, Pretty, J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustainability 7: 292320
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35: 199204
Kemble, JM (2012) Vegetable Crop Handbook for the Southeastern United States 2013. 14th edn. Lincolnshire, IL: Vance Publishing Corp. Pp 9697
Lonsbary, SK, O'sullivan, J, Swanton, CJ (2003) Stale-seedbed as a weed management alternative for machine-harvested cucumbers (Cucumis sativus). Weed Technol 17: 724730
Meyers, SL, Jennings, KM, Monks, DW (2013) Herbicide-based weed management programs for Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Technol 27: 331340
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010a) Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol 24: 495503
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010b) Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci 58: 199203
Monks, DW, Jennings, KM, Mitchem, WE (2012) Organic Production—Weed Management on Organic Farms. Raleigh, NC: North Carolina Extension Services. 34 p
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (Special Issue): 3162
Place, G, Bowman, D, Burton, M, Rutty, T (2008) Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant Soil 307: 179190
Riggins, CW, Tranel, PJ (2012) Will the Amaranthus tuberculatus resistance mechanism to PPO-inhibiting herbicides evolve in other Amaranthus species? Int J Agric 2012: 17
Seem, JE, Creamer, NG, Monks, DW (2003) Critical weed-free period for ‘Beauregard’ sweetpotato (Ipomoea batatas). Weed Technol 17: 686695
Steckel, LE, Sprague, CL, Stoller, EW, Wax, LM (2004) Temperature effects on germination of nine Amaranthus species. Weed Sci 52: 217221
[USDA] U.S. Department of Agriculture (2005) United States standards for grades of sweetpotato. Washington, DC: U.S. Department of Agriculture
[USDA] U.S. Department of Agriculture (2015a) Crop production 2014 summary. http://www.usda.gov/nass/PUBS/TODAYRPT/cropan15.pdf. Accessed May 2015
[USDA] U.S. Department of Agriculture (2015b) Crop values 2014 summary. http://www.nass.usda.gov/Publications/Todays_Reports/reports/cpvl0215.pdf. Accessed May 25, 2015
Walters, SA, Young, BG (2012) Herbicide application timings on weed control and jack-o lantern pumpkin yield. HortTechnology 22: 201206
Webster, TM (2010) Weed survey—southern states. Proc. South Weed Sci. Soc. 63: 246257
Webster, TM (2013) Weed survey—southern states. Proc. South Weed Sci. Soc. 66: 275287

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed