Skip to main content Accessibility help
×
Home

Efficiency of an Optically Controlled Sprayer for Controlling Weeds in Fallow

  • Gail A. Wicks (a1), Warwick L. Felton (a2), Robert D. Murison (a3), Gordon E. Hanson (a1) and Paul G. Nash (a4)...

Abstract

Field experiments were conducted to compare performance of glyphosate with three different boom arrangements in a winter wheat-fallow rotation near North Platte, NE, in 1994 and 1995. One boom was optically controlled, and the other boom was for broadcast herbicide applications. Spraying with both booms at the same time was called “dual boom.” The sprayers were tested during May, June, and July on two weed density levels established by applying glyphosate at 0.42 kg ae/ha with and without atrazine at 0.84 kg ai/ha in October following wheat harvest. The dual-boom and the broadcast herbicide applications were more efficient in controlling weeds than the optically controlled system. The dual boom reduced weed density 4.5-fold compared with the optically controlled sprayer used alone. Horseweed < 8 cm tall was more difficult to control with the optically controlled sprayer than redroot pigweed and kochia because of its cylindrical-shaped growth patterns. Barnyardgrass and green foxtail seedlings with an erect growth pattern were also difficult for the sensors to detect. Poorer control with the optically controlled sprayer was associated with failure to identify small weeds, chlorotic plants, inconsistency among sensors, and too wide a field of view (FOV), as sensors were spaced farther apart than presently recommended. The number of sensors on a boom needs to be increased to improve the performance of the optically controlled sprayer.

Copyright

References

Hide All
Ahrens, W. H. 1994. Relative costs of a weed activated versus conventional sprayer in northern Great Plains fallow. Weed Technol. 8:5057.
Anonymous. 1993. Detectspray User Manual System 50. North Fargo, ND: Concord. 31 p.
Blackshaw, R. E. 1995. Detectspray-S45 use in conservation fallow on the Canadian Prairies. Weed Sci. Soc. Am. Abstr. 48. 16 p.
Blackshaw, R. E. 1996. Weed sensing sprayer reduced herbicide use in conservation tillage. In Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanillco, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proceedings of the 2nd International Weed Control Congress. Flakkebjerg, Denmark: Department of Weed Control and Pesticide Ecology. pp. 13131316.
Chambers, J. M. and Hastie, T. J., eds. 1997. Statistical model in S. London. Chapman and Hall. 608 p.
Duff, P. 1993. Detectspray system. Weed Sci. Soc. Am. Abstr. 133. 45 p.
Felton, W. L. 1990. Use of weed detection for fallow weed control. Conservation tillage. In Conservation Tillage Proceedings of the Great Plains Agricultural Council Bull. 131. pp. 241244.
Felton, W. L., Doss, A. F., Nash, P. G., and McCloy, K. R. 1991. A microprocessor controlled technology to selectively spot spray weeds. Automated Agriculture for the 21st Century Symposium. Proc. Am. Soc. Agric. Eng. 11–91:427432.
Fenster, C. R. and Wicks, G. A. 1977. Minimum tillage fallow systems for reducing wind erosion. Trans. ASAE 20:906910.
Hanson, G. E. and Wicks, G. A. 1992. Use of the Detectspray in Nebraska. Proc. N. Cent. Weed Sci. Soc. 47:6167.
Hanson, G. E. and Wicks, G. A. 1993. Weed control with the Detectspray. Proc. N. Cent. Weed Sci. Soc. 48:52.
Howard, K. D. and Hanks, J. E. 1993. Consistency of the calibration parameters for sensor sprayer. Detectspray system. Weed Sci. Soc. Am. Abstr. 130. 44 p.
Verbyl, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. 1997. The Analysis of Designated Experiments and Longitudinal Data Using Smoothing Splines. Research Rep. 97/4. Adelaide, Australia: University of Adelaide. 49 p.
Wicks, G. A., Stahlman, P. W., and Anderson, R. L. 1995. Weed management systems for the semiarid areas of the Central Great Plains. Proc. N. Cent. Weed Sci. Soc. 50:174199.

Keywords

Efficiency of an Optically Controlled Sprayer for Controlling Weeds in Fallow

  • Gail A. Wicks (a1), Warwick L. Felton (a2), Robert D. Murison (a3), Gordon E. Hanson (a1) and Paul G. Nash (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed