Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-26T21:57:33.317Z Has data issue: false hasContentIssue false

Efficacy and Economics of Herbicide Programs Compared to Methyl Bromide for Weed Control in Polyethylene-Mulched Tomato

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Ronald Rainey
Affiliation:
Department of Agricultural Economics and Agricultural Business, University of Arkansas, South University Avenue, Room 308J, Little Rock, AR 72204-4940
*
Corresponding author's E-mail: pdevkota@purdue.edu

Abstract

Methyl bromide (MeBr), a widely used soil fumigant in tomato production, has been banned for ordinary agricultural uses. In the absence of MeBr, a viable alternative is imperative for weed control and prevention of economic loss in tomato production. A field study was conducted in the summers of 2010 and 2011 at Fayetteville, AR, to compare the efficacy and economics of herbicide programs consisting of pre-transplant followed by (fb) post-transplant herbicides in low-density polyethylene (LDPE) mulched tomato. Pre-transplant imazosulfuron at 0.112, 0.224, and 0.336 kg ai ha−1 and S-metolachlor at 1.6 kg ai ha−1 were fb a post-transplant mixture of trifloxysulfuron plus halosulfuron at 0.008 and 0.027 kg ai ha−1 at 4 wk after transplant (WATP). The standard MeBr treatment (2:1 mixture of MeBr plus chloropicrin at 390 kg ai ha−1), weed-free (hand weeding) control, and nontreated weedy check were used for comparison. Pre-transplant S-metolachlor fb post-transplant herbicides controlled Palmer amaranth ≥ 89%, large crabgrass ≥ 88%, and yellow nutsedge ≥ 90%, which was comparable to the control with MeBr. Tomato recovered the injury (≤ 19% at 6 WATP) from post-transplant herbicides in the later weeks. S-metolachlor–containing herbicide programs yielded marketable tomato fruit comparable to the yield with MeBr. Economic evaluation of the herbicide programs demonstrated a net return of $3,758.50 ha−1 from the S-metolachlor–containing herbicide program in LDPE-mulched tomato. Likewise, this herbicide program showed minimum loss of ≤ $671.61 ha−1 in net return relative to MeBr. In conclusion, a herbicide program consisting of pre-transplant S-metolachlor fb post-transplant trifloxysulfuron plus halosulfuron is a viable alternative to MeBr for weed control and marketable yield in LDPE-mulched tomato production.

Methyl bromide (MeBr), un fumigante ampliamente usado en la producción de tomate, ha sido prohibido para usos agrícolas ordinarios. En ausencia de MeBr, una alternativa viable es imperativa para el control de malezas y la prevención de pérdidas económicas en la producción de tomate. En Fayetteville, AR, durante los veranos de 2010 y 2011, se realizó un estudio de campo para comparar la eficacia y la economía de programas de herbicidas para tomate que consistieron de herbicidas pre-trasplante seguidos de (fb) herbicidas pos-trasplante en coberturas plásticas de polyethylene de baja densidad (LDPE). Imazosulfuron en pre-trasplante a 0.112, 0.224, y 0.336 kg ai ha−1 y S-metolachlor a 1.6 kg ai ha−1 fueron fb una mezcla pos-trasplante de trifloxysulfuron más halosulfuron a 0.008 y 0.027 kg ai ha−1 a 4 semanas después del trasplante (WATP). Para fines de comparación, se usaron el tratamiento estándar de MeBr (mezcla 2:1 de MeBr más chloropicrin a 390 kg ai ha−1), un testigo limpio de malezas (deshierba manual), y un testigo enmalezado sin tratamiento. S-metolachlor en pre-trasplante fb herbicidas pos-trasplante controlaron Amaranthus palmeri ≥89%, Digitaria sanguinalis ≥88%, y Cyperus esculentus ≥90%, lo que fue comparable al control con MeBr. El tomate se recuperó del daño (≤19% a 6 WATP) causado por los herbicidas pos-trasplante en las semanas siguientes. Los programas de herbicidas que contenían S-metolachlor tuvieron rendimientos de tomate comercializable comparables al rendimiento con MeBr. La evaluación económica de los programas de herbicidas demostraron una ganancia neta de $3,758.50 ha−1 para los programas que contenían S-metolachlor en tomate con cobertura plástica LDPE. De la misma manera, este programa de herbicidas mostró la pérdida mínima ≤$671.61 en ganancia relativa a MeBr. En conclusión, un programa de herbicidas que consista de S-metolachlor en pre-trasplante fb trifloxysulfuron más halosulfuron en pos-trasplante es una alternativa viable al MeBr para el control de malezas y el rendimiento comercializable en la producción de tomate con cobertura plástica LDPE.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Botany & Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054.

References

Literature Cited

Adock, C. W., Foshee, W. G. III, Wehtje, G. R., and Gilliam, C. H. 2008. Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in LDPE mulch for multi-cropping systems. Weed Technol. 22:136141.Google Scholar
Anderson, W. P. 1999. Perennial Weeds: Characteristics and Identification of Selected Herbaceous Species. 1st ed. Ames, IA Iowa State University Press.Google Scholar
Bangarwa, S. K. 2010. Integrated strategies for purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) management in tomato and bell pepper. Ph.D Dissertation. Fayetteville, AR University of Arkansas. 208 p.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2009. Integration of a Brassicaceae cover crop with herbicides in plasticulture tomato. Weed Technol. 23:280286.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Rainey, R. L., and Gbur, E. E. 2010. Economic returns in plasticulture tomato production from crucifer cover crops as a methyl bromide alternative for weed management. HortTechnology. 20:764771.Google Scholar
Bollman, S. L. and Sprague, C. L. 2007. Optimizing S-metolachlor and dimethanamid-P in sugarbeet microrate treatments. Weed Technol. 21:10541063.Google Scholar
Boydston, R. and Felix, J. 2008. Yellow nutsedge control in potato with imazosulfuron. West. Soc. Weed Sci. Meet. Proc. 61:6.Google Scholar
Branson, J. W., Smith, K. L., and Barrentine, J. L. 2005. Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol. 19:404410.Google Scholar
Chernicky, J. P., Gossett, B. J., and Murphy, T. R. 1984. Factors influencing control of annual grasses with sethoxydim or RO-13-8895. Weed Sci. 32:174177.Google Scholar
Dittmar, P. J., Monks, D. W., and Jennings, K. M. 2012. Effect of drip-applied herbicides on yellow nutsedge (Cyperus esculentus) in plasticulture. Weed Technol. 26:243247.Google Scholar
Fu, R. and Ashley, R. A. 2006. Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper. Weed Sci. 54:364372.Google Scholar
Garvey, P. V., Meyers, S. L., Monks, D. W., and Coble, H. D. 2012. Influence of Palmer amaranth (Amaranthus palmeri) on the critical period for weed control in plasticulture-grown tomato (Lycopersicon esculentum). Weed Technol. DOI: http://dx.doi.org/10.1614/WT-D-12-00028.1.Google Scholar
Godara, R. K., Williams, B. J., Webster, E. P., Griffin, J. L., and Miller, D. K. 2012. Evaluation of imazosulfuron for broadleaf weed control in drill-seeded rice. Weed Technol. 26:1923.Google Scholar
Hartzler, G. H. and Foy, C. I. 1983. Efficacy of three postemergence grass herbicides for soybeans. Weed Sci. 31:557561.Google Scholar
Henson, I. E. and Little, C. S. 1969. Penetration of polyethylene film by the shoots of Cyperus rotundus. Pest Artic. News. 15:6466.Google Scholar
Holmes, G. J. and Kemble, J. M. 2010. Vegetable Crop Handbook for the Southeastern United States. 11th ed. Lincolnshire, IL Vance.Google Scholar
Hood, K., Ingram, D., Nagel, D. H., and Layton, H. C. 2011. Traditional vegetables 2012 planning budgets. Mississippi State University, Department of Agricultural Economics budget report 2011-08.Google Scholar
Jennings, K. M. 2010. Tolerance of fresh-market tomato to postemergence-directed imazosulfuron, halosulfuron, and trifloxysulfuron. Weed Technol. 24:117120.Google Scholar
Kammler, K. J., Walters, S. A., and Young, B. G. 2010. Effects of adjuvants, halosulfuron, and grass herbicides on Cucurbita spp. injury and grass control. Weed Technol. 24:147152.Google Scholar
Kelly, N. A. and Renner, K. A. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol. 16:512519.Google Scholar
Locascio, S. J., Gilreath, R. J., Dickson, D. W., Kucharek, T. A., Jones, J. P., and Noling, J. W. 1997. Fumigant alternatives of methyl bromide for polyethylene mulched tomato. HortScience. 32:12081211.Google Scholar
McElroy, S. J., Yelverton, F. H., Burke, I. C., and Wilcut, J. W. 2004. Absorption, translocation, and metabolism of halosulfuron and trifloxysulfuron in green kyllinga (Kyllinga brevifolia) and false-green kyllinga (K. gracillima). Weed Sci. 52:704710.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58:199203.Google Scholar
Monks, D. W. and Schultheis, J. R. 1998. Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrullus lanatus). Weed Sci. 46:530532.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1997. Effect of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annum) vegetative growth and fruit yield. Weed Technol. 11:672676.Google Scholar
Morrica, P., Giordano, A., Seccia, S., Ungaro, F., and Ventriglia, M. 2001. Degradation of imazosulfuron in soil. Pest Manag. Sci. 57:360365.Google Scholar
Norsworthy, J. K., Malik, M. S., Jha, P., and Riley, M. B. 2007. Suppression of Digitaria sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing cover crops in organically grown bell pepper. Weed Research. 45:425432.Google Scholar
Norsworthy, J. K. and Meister, C. W. 2007. Tolerance of cantaloupe to postemergence applications of rimsulfuron and halosulfuron. Weed Technol. 21:3036.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.Google Scholar
Patterson, D. T. 1982. Shading responses of purple and yellow nutsedge (Cyperus rotundus and C. esculentus) Weed Sci. 30:2530.Google Scholar
Riar, D. S. and Norsworthy, J. K. 2011. Use of imazosulfuron in herbicide programs for drill-seeded rice (Oryza sativa) in the mid-south united states. Weed Technol. 25:548555.Google Scholar
Sanders, D. C., Cook, W. P., and Cranberry, D. 1996. Plasticulture of commercial vegetables. North Carolina Cooperative Extension Services. North Carolina State University. 6/96-4M-SAF. AG-489. E96 27374.Google Scholar
Santos, B. M., Gilreath, J. P., Lugo, M. L., and Rivera, L. E. 2008. Managing weeds with drip-applied herbicides in tomato. Crop Prot. 27:101103.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., and Shilling, D. G. 1997. Effects of shading on the growth of nutsedges (Cyperus spp.). Weed Sci. 45:670673.Google Scholar
Singh, S. and Singh, M. 2004. Effect of growth stage on trifloxysulfuron and glyphosate efficacy in twelve weed species of citrus groves. Weed Technol. 18:10311036.Google Scholar
Strange, M. L., Schrader, W. L., and Hartz, T. K. 2000. Fresh-market tomato production in California. Vegetable Research and Information Center, Division of Agriculture and Natural Resources, University of California, UC Davis. Publication 8017.Google Scholar
Sydorovych, O., Safley, C. D., Welker, R. M., Ferguson, L. M., Monks, D. W., Jennings, K., Driver, J., and Louws, F. J. 2008. Economic evaluation of the methyl bromide alternatives for the production of tomatoes in North Carolina. HortTechnology. 18:705713.Google Scholar
[USDA] United States Department of Agriculture. 1997. United States standards for grades of fresh tomato. Accessed on: August 16, 2010.Google Scholar
USDA Web Soil Survey. 2012. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed March 1, 2012.Google Scholar
Webster, T. M. 2005. Mulch type affects growth and tuber production of yellow nutsedge and purple nutsedge. Weed Sci. 53:834838.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59:260277.Google Scholar