Skip to main content Accessibility help
×
Home

The Effect of Weed Density and Application Timing on Weed Control and Corn Grain Yield

  • Matthew W. Myers (a1), William S. Curran (a1), Mark J. Vangessel (a2), Bradley A. Majek (a3), Barbara A. Scott (a2), David A. Mortensen (a1), Dennis D. Calvin (a4), Heather D. Karsten (a1) and Gregory W. Roth (a1)...

Abstract

A 2-yr experiment repeated at five locations across the northeastern United States evaluated the effect of weed density and time of glyphosate application on weed control and corn grain yield using a single postemergence (POST) application. Three weed densities, designed to reduce corn yields by 10, 25, and 50%, were established across the locations, using forage sorghum as a surrogate weed. At each weed density, a single application of glyphosate at 1.12 kg ai/ha was applied to glyphosate-resistant corn at the V2, V4, V6, and V8 growth stages. At low and medium weed densities, the V4 through V8 applications provided nearly complete weed control and yields equivalent to the weed-free treatment. Weed biomass and the potential for weed seed production from subsequent weed emergence made the V2 timing less effective. At high weed densities, the V4 followed by the V6 timing provided the most effective weed control, while maintaining corn yield. Weed competition from subsequent weed emergence in the V2 application and the duration of weed competition in the V8 timing reduced yield on average by 12 and 15%, respectively. This research shows that single POST applications can be successful but weed density and herbicide timing are key elements.

Copyright

Corresponding author

Corresponding author's E-mail: mwm133@psu.edu

References

Hide All
Baker, D. B. 1985. Regional water quality impacts of intensive row-crop agriculture: a Lake Erie Basin case study. J. Soil Conserv 40:125132.
Baker, J. L. and Johnson, H. P. 1979. The effects of tillage systems on pesticides in runoff from small watersheds. Trans. Am. Soc. Agric. Eng 22:554559.
Burnside, O. C. 1980. Shattercane control in narrow-row soybeans. Agron. J 72:753757.
Carey, J. B. and Kells, J. J. 1995. Timing of total postemergence herbicide applications to maximize weed control and corn (Zea mays) yield. Weed Technol. 9:356361.
Fellows, G. M. 1990. Shattercane Distribution, Interference, and Economic Impact in Nebraska. Ph.D. dissertation. University of Nebraska, Lincoln, NE.
Foy, C. L. and Witt, H. L. 1990. Johnsongrass control with DPX-V9360 and CGA-136872 in corn in Virginia. Weed Technol. 4:615619.
Gower, S. A., Loux, M. M., Cardina, J., and Harrison, S. K. 2002. Effect of planting date, residual herbicide, and postemergence application timing on weed corn and grain yield in glyphosate-tolerant corn (Zea mays). Weed Technol. 16:488494.
Gower, S. A., Loux, M. M., and Cardina, J. et al. 2003. Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate-resistant corn: results of a 2-yr multistate study. Weed Technol. 17:821828.
Halford, C., Hamill, A. S., Zhang, J., and Doucet, C. 2001. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 15:737744.
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40:441447.
Liu, F. H. and O'Connell, N. V. 2002. Off-site movement of surface-applied simazine from a citrus orchard as affected by irrigation incorporation. Weed Sci. 50:672676.
[NASS] National Agricultural Statistics Service. 2002. Agricultural Chemical Usage. Washington, DC: Agricultural Statistics Board and USDA.
Neeser, C., Dieleman, J. A., Krishnan, G., Mortensen, D. A., Rawlinson, J. T., Martin, A. R., and Bills, L. B. 2004. WeedSOFT™: a weed management decision support system. Weed Sci. 52:115122.
Pantone, D. J., Young, R. A., Buhler, D. D., Eberlein, C. V., Koskinen, W. C., and Forcella, F. 1992. Water quality impacts associated with pre- and postemergence applications of atrazine in maize. J. Environ. Qual. 21:567573.
Ritchie, S. W., Hanway, J. J., and Benson, G. O. 1993. How a Corn Plant Develops. Ames, IA: Iowa State University Publication Special Rep. 48.
Schreiber, M. M., Srasha, B. S., Trimmell, D., and White, M. D. 1988. Controlled release of herbicides. in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides. Champaign, IL: Weed Science Society of America.
Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: the rationale and approach. Weed Technol. 5:657663.
Tapia, L. S., Bauman, T. T., and Harvey, R. G. et al. 1997. Postemergence herbicide application timing effects on annual grass control and corn (Zea mays) grain yield. Weed Sci. 45:138143.
Troiano, J. and Garretson, C. 1998. Movement of simazine in runoff water from citrus orchard row middles as affected by mechanical incorporation. J. Environ. Qual. 27:488494.
Vesecky, J. F., Feltner, K. C., and Vanderlip, R. L. 1973. Wild cane and forage sorghum competition in grain sorghum. Weed Sci. 21:2832.

Keywords

The Effect of Weed Density and Application Timing on Weed Control and Corn Grain Yield

  • Matthew W. Myers (a1), William S. Curran (a1), Mark J. Vangessel (a2), Bradley A. Majek (a3), Barbara A. Scott (a2), David A. Mortensen (a1), Dennis D. Calvin (a4), Heather D. Karsten (a1) and Gregory W. Roth (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed