Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T14:10:37.167Z Has data issue: false hasContentIssue false

Divalent Cations in Spray Water Influence 2,4-D Efficacy on Dandelion (Taraxacum officinale) and Broadleaf Plantain (Plantago major)

Published online by Cambridge University Press:  20 January 2017

Aaron J. Patton*
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
Daniel V. Weisenberger
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: ajpatton@purdue.edu.

Abstract

2,4-dichlorophenoxyacetic acid (2,4-D) is a common ingredient in POST broadleaf herbicides labeled for use in turf, pastures, rangeland, and grain crops. The herbicide 2,4-D is a weak acid, and when dissociated can bind to cations present in hard-water spray solutions and/or fertilizer solutions. Experiments were conducted with 2,4-D dimethylamine to evaluate the effect of cation solutions on herbicide efficacy on the perennial broadleaf weeds dandelion and broadleaf plantain. The objectives of this research were to (1) determine if 2,4-D efficacy is influenced by the divalent cations, calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) in spray solution; and (2) determine if adding the adjuvant ammonium sulfate (AMS) to the spray solution can overcome antagonism. Broadleaf plantain and dandelion control was reduced and plant size and mass increased when 2,4-D was applied in a Ca solution in comparison to deionized water. However, 2,4-D antagonism was overcome when AMS was added as an adjuvant to the spray solution. Magnesium caused 2,4-D antagonism on both weed species in one run of the experiment similar to Ca solution and AMS was successful at overcoming antagonism when added to the tank mixture. Some 2,4-D antagonism from Mn was noticed even when AMS was in the tank mix, but Zn fertilizer solutions did not antagonize 2,4-D activity on either weed species. Although divalent cations can antagonize 2,4-D dimethylamine and reduce perennial broadleaf weed control, adding AMS can overcome this antagonism when Ca and Mg are the primary cations in spray solution. Applicators should avoid using Mn fertilizers when applying 2,4-D dimethylamine because AMS did not successfully overcome antagonism.

2,4-dichlorophenoxyacetic acid (2,4-D) es un ingrediente común en herbicidas POST para el control de malezas de hoja ancha registrados para su uso en céspedes, pasturas, y cultivos de granos. El herbicida 2,4-D es un ácido débil, y cuando este se disocia puede adherirse a cationes presentes en soluciones de aspersión con aguas pesadas y/o soluciones con fertilizantes. Se realizaron experimentos de campo con 2,4-D dimethylamine para evaluar el efecto de soluciones con cationes en la eficacia del herbicida para el control de las malezas perennes de hoja ancha Taraxacum officinale y Plantago major. Los objetivos de esta investigación fueron (1) determinar si la eficacia de 2,4-D es influenciada por los cationes divalentes calcium (Ca), magnesium (Mg), manganese (Mn), y zinc (Zn) en la solución de aspersión; y (2) determinar si el agregar el adyuvante ammonium sulfate (AMS) a la solución de aspersión puede reducir el antagonismo. El control de P. major y T. officinale se redujo y el tamaño y masa de planta aumentó cuando 2,4-D fue aplicado en una solución de Ca en comparación con agua desionizada. Sin embargo, el antagonismo con el 2,4-D fue reducido cuando se agregó AMS como adyuvante para la solución de aspersión. Magnesium causó antagonismo con 2,4-D en ambas especies de malezas en una de las corridas experimentales, la cual fue similar a la solución de Ca y AMS fue exitoso en reducir el antagonismo cuando se agregó a la mezcla en tanque. Se notó un poco de antagonismo entre 2,4-D y Mn inclusive cuando AMS estuvo en la mezcla en tanque, pero las soluciones de Zn no antagonizaron la actividad del 2,4-D en ninguna de las especies. Aunque los cationes divalentes pueden antagonizar al 2,4-D dimethylamine y reducir el control de malezas perennes de hoja ancha, el agregar AMS puede reducir este antagonismo cuando Ca y Mg son los cationes primarios en la solución de aspersión. Los aplicadores deberían evitar usar fertilizantes con Mn cuando apliquen 2,4-D dimethylamine porque AMS no reducirá exitosamente el antagonismo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Ramon G. Leon, University of Florida.

References

Literature Cited

Beck, LL, Patton, AJ (2015) Weed garden: an effective tool for extension education. J Extension 53:Article 4TOT8 Google Scholar
Bernards, ML, Thelen, KD, Penner, D, Muthukumaran, RB, McCracken, JL (2005) Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci 53:787794 Google Scholar
Briggs, JC, Ficke, JF (1977) Quality of Rivers of the United States, 1975 Water Year; Based on the National Stream Quality Accounting Network (NASQAN). Open-File Report 78-200, 436 p. U.S. Geological Survey. http://pubs.er.usgs.gov/publication/ofr78200. Accessed December 24, 2014Google Scholar
Bryson, CT, De Felice, MS (2010) Weeds of the Midwestern United States and Central Canada. Athens, GA: University of Georgia Press. 427 pGoogle Scholar
Buhler, DD, Burnside, OC (1983) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31:163169 Google Scholar
Chahal, GS, Jordan, DL, Burton, JD, Danehower, D, York, AC, Eure, PM, and Clewis, B (2012) Influence of water quality and coapplied agrochemicals on efficacy of glyphosate. Weed Technol 26:167176 Google Scholar
Cheng, Z, Richmond, DS, Salminen, SO, and Grewal, PS (2008) Ecology of urban lawns under three common management systems. Urban Ecosyst 11:177195 Google Scholar
Durfor, CN, Becker, E (1964) Public water supplies of the 100 largest cities in the United States; 1962 U.S. Geological Survey Water Supply Paper 1812. Washington, DC: U.S. Government Printing Office. 364 pGoogle Scholar
Epstein, E, Bloom, AJ (2005) Mineral Nutrition of Plants: Principles and Perspective. Sunderland, MA: Sinauer Associates. 400 pGoogle Scholar
Ghali, IE, Miller, GL, Grabow, G, Huffman, RL (2012) Using variability within digital images to improve tall fescue color characterization. Crop Sci 52:23652374 Google Scholar
Glass, RL (1984) Metal complex formation by glyphosate. J Agric Food Chem 32:12491253 Google Scholar
Hartzler, RG, Singer, JW, Kohler, KA, Buhler, DD (2006) Effect of repeated glyphosate use on weed communities in a soybean–corn rotation. Crop Manag DOI: Google Scholar
McBride, M, Kung, K-H (1989) Complexation of glyphosate and related ligands with iron (III). Soil Sci Soc Am J 53:16681673 Google Scholar
McElroy, JS, Bhowmik, PC (2013) Turfgrass Weed Management. Pages 147177 in Stier, JC, Horgan, BP, Bonos, SA, eds. Agronomy Monograph 56: Turfgrass: Biology, Use, and Management. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America Google Scholar
McMullan, PM (2000) Utility adjuvants. Weed Technol 14:792797 Google Scholar
Nalewaja, JD, Manthey, FA, Szelezniak, EF, Anyska, Z (1989) Sodium bicarbonate anatagonism of sethoxydim. Weed Technol 3:654658 Google Scholar
Nalewaja, JD, Matysiak, R (1991) Salt antagonism of glyphosate. Weed Sci 39:622628 Google Scholar
Nalewaja, JD, Matysiak, R (1993) Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol 7:154158 Google Scholar
Nalewaja, JD, Matysiak, R, Szelezniak, E (1994) Sethoxydim response to spray carrier chemical properties and environment. Weed Technol 8:591597 Google Scholar
Nalewaja, JD, Woznica, Z, Manthey, FA (1990) Sodium bicarbonate antagonism of 2,4-D amine. Weed Technol 4:588591 Google Scholar
Nalewaja, JD, Woznica, Z, Matysiak, R (1991) 2,4-D amine antagonism by salts. Weed Technol 5:873880 Google Scholar
Nalewaja, JD, Woznica, Z, Szeleznak, EF, Ramsdale, B (2007) Sequence of tank-mixing water conditioning adjuvants and herbicides. in Gaskin, RE, ed. Proceedings of the 8th International Symposium for Agrochemicals. Columbus, OH: International Society for Agricultural Adjuvants (ISSA) Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol 17:589598 Google Scholar
Roskamp, JM, Chahal, GS, Johnson, WG (2013) The effect of cations and ammonium sulfate on the efficacy of dicamba and 2,4-D. Weed Technol 27:7277 Google Scholar
Ross, MA, Lembi, CA (1985) Applied Weed Science: Including the Ecology and Management of Invasive Plants. Saddle River, NJ: Pearson Education. 561 pGoogle Scholar
Sawyer, CN (1960) Chemistry for Sanitary Engineers. New York: McGraw-Hill. 367 pGoogle Scholar
Schleicher, LC, Throssell, CS, Reicher, ZJ, Weisenberger, DV (1995) Scheduling postemergence broadleaf herbicide applications in turf by growing degree-days. Page 151 in Agronomy Abstracts. Madison, WI: American Society of Agronomy Google Scholar
Schneider, CA, Rasband, WS, Eliceiri, KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671675 Google Scholar
Scroggs, DM, Miller, DK, Stewart, AM, Leonard, BR, Griffin, JL, Blouin, DC (2009) Weed response to foliar coapplications of glyphosate and zinc sulfate. Weed Technol 23:171174 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America. Pages 458 pGoogle Scholar
Soldat, D, Obear, G, DeBels, B, Barak, P (2012) Quantifying turfgrass cover with digital image analysis using ImageJ. Agronomy Abstracts, American Society of Agronomy, Madison, WI. https://scisoc.confex.com/crops/2012am/webprogram/Paper72696.html. Accessed July 3, 2015Google Scholar
Thelen, KD, Jackson, EP, Penner, D (1995) The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43:541548 Google Scholar
Timmons, FL (2005) A history of weed control in the United States and Canada. Weed Sci 53:748761 Google Scholar
[US EPA] U.S. Environmental Protection Agency (1986) Quality Criteria for Water, 1986. Office of Water Regulations and Standards, EPA 440/5-86-001. Washington, DC: U.S. Environmental Protection Agency. 477 pGoogle Scholar
Whitford, F, Lindner, G, Young, B, Penner, D, Deveau, J, Linscott, D, Zhu, H, Zollinger, R, Spandl, E, Johnson, B, Wise, K, Patton, A, Champion, C, Harre, N, Wagner, N, Smith, KL (2014) Understanding Adjuvants and the Water Droplet: Improving the Dose-Transfer from the Tank to the Target Pest. Purdue University Extension Publication PPP-107. West Lafayette, IN: Purdue Extension. 60 pGoogle Scholar
Woznica, Z, Nalewaja, JD, Messersmith, CG, Milkowski, P (2003) Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technol 17:582588 Google Scholar
Zollinger, RK, Nalewaja, JD, Peterson, DE, Young, BG (2010) Effect of hard water and ammonium sulfate on weak acid herbicide activity. J Am Soc Test Mater Int 7(6): 110 Google Scholar