Skip to main content Accessibility help

Cotton Injury and Yield as Affected by Simulated Drift of 2,4-D and Dicamba

  • Molly E. Marple (a1), Kassim Al-Khatib (a1) and Dallas E. Peterson (a1)


Experiments were conducted at Manhattan, KS in 2005 and 2006 to evaluate cotton response to simulated 2,4-D and dicamba drift rates at different stages of growth and multiple applications of 2,4-D. Cotton was treated with 2,4-D and dicamba at 0, 1/200, and 1/400 of the use rate (561 g ae/ha) when plants were at the three- to four-leaf, 8-, 14-, or 18-node growth stages. Injury symptoms after 2,4-D and dicamba application were more severe at the three- to four-leaf stage compared with other stages with greatest injury from 2,4-D. In general, plants partially recovered from 2,4-D and dicamba injury symptoms, and only 2,4-D applied at the 1/200 rate reduced fiber yield. In a separate study, cotton was treated with 2,4-D at 0, 1/400, 1/800, and 1/1,200 of the use rate for one, two, or three applications. Yield reduction increased as herbicide rate increased from 1/1,200 to 1/400 and the number of applications increased from one to three. In both studies, plants partially or fully recovered from injury symptoms and recovery was greater with dicamba than 2,4-D. Correlation coefficient analysis showed that visual injury ratings later in the growing season are a good predictor of yield reduction (R 2 = 0.58).


Corresponding author

Corresponding author's E-mail:


Hide All
Al-Khatib, K., Gealy, D., and Boerboom, C. 1994. Effect of droplet size and thifensulfuron concentration on phytotoxicity in pea. Weed Sci 42:482486.
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1993. Wine grape (Vitis vinifera L.) response to simulated herbicide drift. Weed Technol 7:97102.
Andersen, S. M., Clay, S. A., Wrage, L. J., and Matthees, D. 2004. Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron. J. 96:750760.
Bhatti, M. A., Al-Khatib, K., Felsot, A. S., Parker, R., and Kadir, S. 1995. Effects of simulated chlorsulfuron drift on fruit yield and quality of sweet cherries (Prunus avium L.) Environ. Toxicol. Chem 14:537544.
Bhatti, M. A., Al-Khatib, K., and Parker, R. 1996. Wine grape (Vitis vinifera) response to repeated exposure of selected sulfonylurea herbicides and 2,4-D. Weed Technol 10:951956.
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol 20:2331.
Duncan, S. R., Fjell, D. L., Peterson, D. E., and Warmann, G. W. 1993. Cotton production in Kansas. Mahattan, KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service. MF-1088.
Everitt, J. D., Keeling, J. W., and Dotray, P. A. 2005. Effects of 2,4-D timings and rates on cotton growth and yield. Proc. South. Weed Conf 58. Accessed: November 21, 2006.
Fagliari, J. R., Oliveira, R. S. Jr., and Constantin, J. 2005. Impact of sublethal doses of 2,4-D, simulating drift, on tomato yield. J. Environ. Sci. Health B40:201206.
Gilreath, J. P., Chase, C. A., and Locascio, S. J. 2001. Crop injury from sublethal rates of herbicide. III. Pepper. HortSci 36:677681.
Hamilton, K. C. and Arle, H. F. 1979. Response of cotton (Gossypium hirsutum) to dicamba. Weed Sci 27:604607.
Hurst, H. R. 1986. Response of cotton to selected herbicides applied to simulate drift. Mississippi Agriculture Experiment Station Bulletin B-946. Delta: Branch Experiment Station, MS.
Hutchins, R. 1953. 2,4-D herbicides pose threat to cotton and other susceptible crops. Science 118:782783.
Jacoby, P. W., Meadors, C. H., and Clark, L. E. 1990. Effects of triclopyr, clopyralid, and picloram on growth and production of cotton. J. Prod. Agric 3:297301.
Kelley, K. B., Wax, L. M., Hager, A. G., and Riechers, D. E. 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci 53:101112.
Kurtz, M. E. and Street, J. E. 2003. Response of rice (Oryza sativa) to glyphosate applied to simulate drift. Weed Technol 17:234238.
Lanini, W. T. 2000. Simulated drift of herbicides on grapes, tomatoes, cotton, and sunflower. Proc. Calif. Weed Conf 52:107110.
Miller, D. K., Downer, R. G., Leonard, B. R., Holman, E. M., and Kelly, S. T. 2004. Response of nonglyphosate-resistant cotton to reduced rates of glyphosate. Weed Sci 52:178182.
NCDC 2007. US climate reference network. Station 1047. Accessed: March 08, 2007.
Orfanedes, M. S., Wax, L. M., and Liebl, R. A. 1993. Absence of a role for absorption, translocation, and metabolism in differential sensitivity of hemp dogbane (Apocynum cannabinum) to two pyridine herbicides. Weed Sci 41:16.
Rawson, J. E. and Schrodter, G. N. 1981. Preliminary study of the effects of simulated herbicide drift on cotton toxicity, residues. Proc. Aust. Weed Conf 6:137138.
Regehr, D. L., Peterson, D. E., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2006. Chemical weed control for field crops, pastures, rangeland, and noncropland. Report of Progress SRP 958. Manhattan, KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service.
Regier, C., Dilbeck, R. E., Undersander, D. J., and Quisenberry, J. E. 1986. Cotton resistance to 2,4-dichlorophenoxy acetic acid spray drift. Crop Sci 26:376377.
[SAS] Statistical Analysis Systems Institute 2002. SAS/STAT User's Guide. Version 9. Cary, NC: Statistical Analysis Systems Institute.
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004. Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18:11251134.
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol 5:493498.
Snipes, C. E., Street, J. E., and Mueller, T. C. 1992. Cotton (Gossypium hirsutum) response to simulated quinclorac drift. Weed Sci 40:106109.
Staten, G. 1946. Contamination of cotton fields by 2,4-D or hormone type weed sprays. Agron. J. 38:536544.
Thomas, W. E., Burke, I. C., Robinson, B. L., Pline-Srnic', W. A., Edmisten, K. L., Wells, R., and Wilcut, J. W. 2005. Yield and physiological response of nontransgenic cotton to simulated glyphosate drift. Weed Technol 19:3542.
[USDA] U.S. Department of Agriculture 2006. Agricultural Marketing Service. Cotton Program. Accessed May 31, 2006.
Wall, D. A. 1997. Effect of crop growth stage on tolerance to low doses of thifensulfuron:tribenuron. Weed Sci 45:538545.
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci 4:215231.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed