Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T12:00:51.268Z Has data issue: false hasContentIssue false

Confirmation and Control of Triazine and 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicide-Resistant Palmer Amaranth (Amaranthus palmeri) in Nebraska

Published online by Cambridge University Press:  20 January 2017

Amit J. Jhala*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Keim Hall, Lincoln, NE 68583
Lowell D. Sandell
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Keim Hall, Lincoln, NE 68583
Neha Rana
Affiliation:
Northeast Research and Extension Center, Haskell Agricultural Laboratory, University of Nebraska-Lincoln, Concord, NE 68728
Greg R. Kruger
Affiliation:
West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
Stevan Z. Knezevic
Affiliation:
Northeast Research and Extension Center, Haskell Agricultural Laboratory, University of Nebraska-Lincoln, Concord, NE 68728
*
Corresponding author's E-mail: amit.jhala@unl.edu.

Abstract

Palmer amaranth is a difficult-to-control broadleaf weed that infests corn and soybean fields in south-central and southwestern Nebraska and several other states in the United States. The objectives of this research were to confirm triazine and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide-resistant Palmer amaranth in Nebraska and to determine sensitivity and efficacy of POST-applied corn herbicides for control of resistant and susceptible Palmer amaranth biotypes. Seeds from a putative HPPD-resistant Palmer amaranth biotype from Fillmore County, NE were collected from a seed corn production field in fall 2010. The response of Palmer amaranth biotypes to 12 rates (0 to 12×) of mesotrione, tembotrione, topramezone, and atrazine was evaluated in a dose–response bioassay in a greenhouse. On the basis of the values at the 90% effective dose (ED90) level, the analysis showed a 4- to 23-fold resistance depending upon the type of HPPD-inhibiting herbicide being investigated and susceptible biotype used for comparison. This biotype also had a 9- to 14-fold level of resistance to atrazine applied POST. Results of a POST-applied herbicide efficacy study suggested a synergistic interaction between atrazine and HPPD-inhibiting herbicides that resulted in > 90% control of all Palmer amaranth biotypes. The resistant biotype had a reduced sensitivity to acetolactate synthase inhibiting herbicides (halosulfuron and primisulfuron), a photosystem-II inhibitor (bromoxynil), and a protoporphyrinogen oxidase inhibitor (fluthiacet-methyl). Palmer amaranth biotypes were effectively controlled (≥ 90%) with glyphosate, glufosinate, and dicamba, whereas 2,4-D ester provided 81 to 83% control of the resistant biotype and > 90% control of both susceptible biotypes.

Amaranthus palmeri es una maleza de hoja ancha difícil de controlar que infesta campos de maíz y soya en el centro y oeste del sur de Nebraska y en varios otros estados en los Estados Unidos. Los objetivos de esta investigación fueron confirmar la existencia de A. palmeri resistente a triazine y herbicidas inhibidores de 4-hydroxyphenylpyruvate dioxygenase (HPPD) en Nebraska y determinar la sensibilidad y la eficacia de herbicidas para maíz aplicados POST para el control de biotipos de A. palmeri susceptibles y resistentes. Semillas de A. palmeri con resistencia putativa a HPPD provenientes del condado Fillmore, NE fueron colectadas de un campo de producción de maíz en el otoño de 2010. La respuesta de los biotipos de A. palmeri a 12 dosis (0 a 12×) de mesotrione, tembotrione, topramezone, y atrazine fue evaluada en un bioensayo de respuesta a dosis en un invernadero. Con base en los valores del nivel de dosis efectiva de 90%, los análisis mostraron una resistencia de 4 a 23 veces mayor dependiendo del tipo de herbicida inhibidor de HPPD investigado y del biotipo susceptible usado como comparación. Este biotipo también tuvo un nivel de resistencia a atrazine POST de 9 a 14 veces mayor. Los resultados del estudio de eficacia de herbicidas aplicados POST sugirieron una interacción sinérgica entre atrazine y herbicidas inhibidores de HPPD que resultó en >90% de control de todos los biotipos de A. palmeri. El biotipo resistente tuvo una sensibilidad reducida a herbicidas inhibidores de acetolactate synthase (halosulfuron y primisulfuron), a un inhibidor del fotosistema II (bromoxynil) y a un inhibidor de protoporphyrinogen oxidase (fluthiacet-methyl). Los biotipos de A. palmeri fueron controlados efectivamente (≥90%) con glyphosate, glufosinate, y dicamba, mientras que 2,4-D ester brindó un control de 81 a 83% del biotipo resistente y >90% de los dos biotipos susceptibles.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, JA, Martin, AR, Roeth, FW (2006) Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol 20:267274 Google Scholar
Armel, GR, Hall, GJ, Wilson, HP, Cullen, N (2005) Mesotrione plus atrazine mixtures for control of Canada thistle. Weed Sci 53:202211 Google Scholar
Boerboom, CM (1999) Nonchemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol 13:636642 Google Scholar
Bollman, JD, Boerboom, CM, Becker, RL, Fritz, VA (2008) Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol 22:666674 Google Scholar
Bond, JA, Oliver, LR, Stephenson, DO IV (2006) Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol 20:885892 Google Scholar
Burgos, NR, Kuk, Y, Talberr, RE (2001) Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybrids to ALS-inhibitor herbicides. Pest Manag Sci 57:449457 Google Scholar
Corbett, JL, Askew, SD, Thomas, WE, Wilcut, JW (2004) Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 18:443453 Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Green, JM (1998) Differential tolerance of corn (Zea mays) inbreds to four sulfonylurea herbicides and bentazon. Weed Technol 12:474477 Google Scholar
Heap, I (2013) The international Survey of Herbicide Resistant Weeds. Most recent cases of herbicide-resistant weeds. http://www.weedscience.org/Details/RecentCases.aspx. Accessed March 6, 2013Google Scholar
Hugie, JA, Bollero, GA, Tranel, PJ, Riechers, DE (2008) Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranths retroflexsus). Weed Sci 56:265270 Google Scholar
Jhala, AJ (2013) Herbicide-resistant weeds. Pages 1820 in Jhala, AJ, Klein, RN, Knezevic, SZ, Kruger, GR, Reicher, ZJ, Sandell, LD, Young, SL, Wilson, RG, Shea, PJ, Ogg, CL, eds. 2013 Guide for Weed Management in Nebraska with Insecticide and Fungicide Information. Lincoln, NE: University of Nebraska-Lincoln Extension Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840848 Google Scholar
McMullan, PM, Green, JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol 25:514548 Google Scholar
Nandula, VK, Reddy, KN, Koger, CH, Poston, DH, Rimando, AM, Duke, SO, Bond, JA, Ribeiro, DN (2012) Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth from Mississippi and response to flumiclorac. Weed Sci 60:179188 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth in Arkansas. Weed Technol 22:108113 Google Scholar
Parker, RG, York, AC, Jordan, DL (2005) Comparison of glyphosate products in glyphosate-resistant cotton (Gossypium hirsutum) and corn (Zea mays). Weed Technol 19:796802 Google Scholar
Rana, N, Knezevic, SZ, Scott, J (2013) HPPD-resistant waterhemp in Nebraska. Pages 165171 in Proceedings of 2013 Crop Production Clinics. Lincoln, NE: University of Nebraska-Lincoln Extension Google Scholar
Sauer, JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann Mo Bot Gard 54:101113 Google Scholar
Sosnoskie, LM, Kichler, JM, Wallace, RD, Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci 59:321325 Google Scholar
Steckel, LE (2007) The diocious Amaranthus spp.: here to stay. Weed Technol 21:567570 Google Scholar
Stubbendieck, J, Friisoe, GY, Bolick, MR (1994) Pigweed family. Pages 3238 in Weeds of Nebraska and the Great Plains. Lincoln, NE: Bureau of Plant Industry, Nebraska Department of Agriculture Google Scholar
Sutton, P, Richards, C, Buren, L, Glasgow, L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981984 Google Scholar
Swanton, CJ, Gulden, RH, Chandler, K (2007) A rationale for atrazine stewardship in corn. Weed Sci 55:7581 Google Scholar
Thompson, CR, Peterson, D, Lally, NG (2012) Characterization of HPPD-resistant Palmer amaranth. Proceedings of the 52nd Annual Conference of Weed Science Society of America. Waikoloa, Hawaii. http://wssaabstracts.com/public/9/proceedings.html. Accessed February 25, 2013Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2012) Prospective Plantings. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1136. Accessed March 1, 2013Google Scholar
Vencill, WK, Prostko, EP, Webster, TE (2002) Is Palmer amaranth resistant to ALS and dinitroaniline herbicides? Proc South Weed Sci Soc 55:189 Google Scholar
Vyn, JD, Swanton, CJ, Weaver, SE, Sikkema, PH (2006) Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre- and postemergence herbicides in Zea mays L. Crop Prot 35:10511056 Google Scholar
Walsh, MJ, Stratford, K, Stone, K, Powles, SB (2012) Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol 26:341347 Google Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth: a review. Weed Technol 27:1227 Google Scholar
Webster, TM (2009) Weed survey—southern states: broadleaf crops subsection. Proc South Weed Sci Soc 62:509524 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, S (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 Google Scholar
Williams, MM II, Pataky, JK (2010) Factors affecting differential sensitivity of sweet corn to HPPD-inhibiting herbicides. Weed Sci 58:289294 Google Scholar
Wise, AM, Grey, TL, Prostko, EP, Vencill, WK, Webster, TM (2009) Establishing geographic distribution level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol 23:214220 Google Scholar