Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T15:09:04.268Z Has data issue: false hasContentIssue false

Common Bermudagrass Seedhead Suppression and Growth Regulation with Fenoxaprop

Published online by Cambridge University Press:  20 January 2017

J. T. Brosnan*
Affiliation:
University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
G. K. Breeden
Affiliation:
University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
G. R. Armel
Affiliation:
University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
J. J. Vargas
Affiliation:
University of Tennessee, 252 Ellington Plant Science Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
*
Corresponding author's E-mail address: jbrosnan@utk.edu

Abstract

Options for suppressing bermudagrass seedheads in managed turfgrass systems are limited. Experiments were conducted in 2009 and 2010 evaluating the use of fenoxaprop (25, 50, 75, and 100 g ha−1) for ‘Riviera’ bermudagrass seedhead suppression and growth regulation compared to imazapic (52 g ha−1), trinexapac-ethyl (91 g ha−1) and mefluidide (561 g ha−1). In field experiments, seedhead suppression ranged from 77 to 100% for fenoxaprop and imazapic at 35 d after treatment (DAT). Comparatively, seedhead suppression was < 25% for either trinexapac-ethyl or mefluidide at 35 DAT. Seedhead suppression was > 90% from 7 to 35 DAT for fenoxaprop applied at ≥ 50 g ha−1. Injury, determined visually, from fenoxaprop and imazapic in both the field and greenhouse measured < 25% on all rating dates, with no significant injury present after 21 DAT. In greenhouse experiments, fenoxaprop and trinexapac-ethyl showed similar reductions of bermudagrass growth; no differences in aboveground biomass were detected between these treatments at 42 DAT. Results of the current study illustrate that fenoxaprop and imazapic can be applied for bermudagrass seedhead suppression and growth regulation if moderate (< 25%) injury can be tolerated up to 21 DAT. Additional research is needed to evaluate the use of fenoxaprop and imazapic for seedhead suppression on other common and hybrid bermudagrasses.

Las opciones para suprimir las inflorescencias de Cynodon dactylon en los sistemas de manejo de céspedes son limitadas. Se realizaron experimentos en 2009 y 2010 para evaluar el uso de fenoxaprop (25, 50, 75, y 100 g ha−1) para la supresión de inflorescencias y regulación del crecimiento de C. dactylon, variedad ‘Riviera’, en comparación con imazapic (52 g ha−1), trinexapac-ethyl (91 g ha−1) y mefluidide (561 g ha−1). En los experimentos de campo, la supresión de inflorescencias varió de 77 a 100% para fenoxaprop e imazapic a 35 días después del tratamiento (DAT). Comparativamente, la supresión de inflorescencias fue menos del 25% para trinexapac-ethyl o mefluidide a 35 DAT. La supresión fue > 90% de 7 a 35 DAT para fenoxaprop aplicado a ≥ 50 g ha−1. El daño, determinado visualmente, debido al fenoxaprop e imazapic en el campo y en invernadero fue menor al 25% en todas las fechas de registro, sin daños significativos después de 21 DAT. En experimentos de invernadero, fenoxaprop redujo el crecimiento de C. dactylon de manera similar a trinexapac-ethyl, ya que no se detectaron diferencias en la biomasa aérea entre estos tratamientos a los 42 DAT. Los resultados del estudio actual demuestran que fenoxaprop e imazapic pueden ser aplicados para suprimir las inflorescencias y regular el crecimiento de C. dactylon si un daño moderado (< 25%) es tolerable hasta 21 DAT. Se requiere investigación adicional para evaluar el uso de fenoxaprop e imazapic para suprimir la producción de inflorescencias en tipos comunes e híbridos de C. dactylon.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, R. E., Kerber, E., Pfister, K., and Weiler, E. W. 1992. Studies on the action of the new growth retardant CGA 163935 (cimectacarb). Pages 818827. In Karssen, C. M., van Loon, L. C., and Vreugdenhil, D., eds. Progress in Plant Growth Regulation. Dordrecht, The Netherlands Kluwer Academic Publishers.CrossRefGoogle Scholar
Anonymous. 2005. Acclaim Extra product label. Research Triangle Park, NC Bayer Environmental Sciences.Google Scholar
Askew, S. D., Shaw, D. R., and Street, J. E. 2000. Graminicide application timing influences red rice (Oryza sativa) seedhead reduction in soybean (Glycine max). Weed Technol. 14:176181.Google Scholar
Baker, R. D., McCarty, L. B., Colvin, D. L., Higgins, J. M., Weinbrecht, J. S., and Moreno, J. E. 1999. Bahiagrass (Paspalum notatum) seedhead suppression following consecutive yearly applications of plant growth retardants. Weed Technol. 13:378384.Google Scholar
Beard, J. B. 1973. Turfgrass Science and Culture. Englewood Cliffs, NJ Prentice Hall, Inc. 658 p.Google Scholar
Beasley, J. B., Branham, B. E., and Spomer, L. A. 2007. Plant growth regulators alter Kentucky bluegrass canopy leaf area and carbon exchange. Crop Sci. 47:757764.Google Scholar
Brosnan, J. T. and Breeden, G. K. 2009. Surface applications of dazomet provide non-selective control of seashore paspalum. Weed Technol. 23:270273.CrossRefGoogle Scholar
Brosnan, J. T., DeFrank, J., Woods, M. S., and Breeden, G. K. 2009a. Efficacy of sodium chloride applications for control of goosegrass (Eleusine indica) in seashore paspalum turf. Weed Technol. 23:179183.CrossRefGoogle Scholar
Brosnan, J. T., DeFrank, J., Woods, M. S., and Breeden, G. K. 2009b. Sodium chloride salt applications provide effective control of sourgrass (Paspalum conjugatum Berg.) in seashore paspalum turf. Weed Technol. 23:251256.CrossRefGoogle Scholar
Brosnan, J. T., Thoms, A. W., Breeden, G. K., and Sorochan, J. C. 2010. Effects of various plant growth regulators on the traffic tolerance of ‘Riviera’ bermudagrass (Cynodon dactylon L.). HortSci. 45:966970.Google Scholar
Bryson, C. T. and DeFelice, M. S., eds. 2009. Weeds of the South. Southern Weed Science Society. Athens, GA University of Georgia Press. 480 p.Google Scholar
Christians, N. E. 2004. Fundamentals of Turfgrass Management. Chelsea, MI Ann Arbor Press. 359 p.Google Scholar
Danneberger, T. K., Branham, B. E., and Vargas, J. M. Jr. 1987. Mefluidide application for annual bluegrass seedhead suppression based on degree-day accumulation. Agron. J. 79:6971.Google Scholar
Elmore, M. T., Brosnan, J. T., Kopsell, D. A., and Breeden, G. K. 2011. Methods of assessing bermudagrass (Cynodon dactylon L.) responses to HPPD inhibiting herbicides. Crop Sci. In press.Google Scholar
Fagerness, M. J. and Yelverton, F. H. 2000. Tissue production and quality of ‘Tifway’ bermudagrass as affected by seasonal application patterns of trinexapac-ethyl. Crop Sci. 40:493497.CrossRefGoogle Scholar
Ferrell, J. A., Murphy, T. R., Vencill, W. K., and Guerke, W. R. 2003. Effect of postemergence herbicides on centipedegrass seedhead production. Weed Technol. 17:871875.Google Scholar
Goatley, J. M. Jr., Maddox, V. L., and Watkins, R. M. 1993. Growth regulation of common bermudagrass (Cynodon dactylon) with imazaquin and AC 263,222. Weed Technol. 7:746750.Google Scholar
Goatley, J. M. Jr., Maddox, V. L., and Watkins, R. M. 1996. Growth regulation of bahiagrass (Paspalum notatum Flueggé) with imazaquin and AC 263,222. HortSci. 31:396399.CrossRefGoogle Scholar
Goatley, J. M. Jr., Maddox, V. L., and Watkins, R. M. 1998. Bahiagrass response to a plant growth regulator as affected by mowing interval. Crop Sci. 38:196200.Google Scholar
Hixson, A. C., Gannon, T. W., and Yelverton, F. H. 2007. Efficacy of application placement equipment for tall fescue (Lolium arundinaceum) growth and seedhead suppression. Weed Technol. 21:801806.Google Scholar
Johnson, B. J. 1989. Response of bermudagrass (Cynodon spp.) to plant growth regulators. Weed Technol. 3:440444.CrossRefGoogle Scholar
Johnson, B. J. 1990. Response of bermudagrass (Cynodon spp.) to multiple growth regulator treatments. Weed Technol. 4:549554.Google Scholar
Johnson, B. J. 1992. Response of bermudagrass (Cynodon spp.) to CGA 163935. Weed Technol. 6:577582.Google Scholar
Johnson, B. J. 1993. Frequency of plant growth regulator and mowing treatments: effects of injury and suppression of centipedegrass. Agron. J. 85:276280.Google Scholar
Johnson, B. J. 1994. Influence of plant growth regulators and mowing on two bermudagrasses. Agron. J. 86:805810.Google Scholar
Johnson, B. J. 1995. Frequency of mowing and plant growth regulators to suppress common bermudagrass. J. Turf. Manag. 1:6171.Google Scholar
Judge, C. A., Neal, J. C., and Derr, J. F. 2005. Response of Japanese stiltgrass (Microstegium vimineum) to application timing, rate, and frequency of postemergence herbicides. Weed Technol. 19:912917.CrossRefGoogle Scholar
Kane, R. and Miller, L. 2003. Field testing plant growth regulators and wetting agents for annual bluegrass seedhead suppression. USGA Green Sect. Rec. 41:2126.Google Scholar
Lewis, D. F., McElroy, J. S., Sorochan, J. C., Mueller, T. C., Samples, T. J., and Breeden, G. K. 2010. Efficacy and safening of aryloxyphenoxypropionate herbicides when tank-mixed with triclopyr for bermudagrass control in zoysiagrass turf. Weed Technol. 24:489494.Google Scholar
Mangiafico, S. S. and Guillard, K. 2005. Turfgrass reflectance measurements, chlorophyll, and soil nitrate desorbed from anion exchange membranes. Crop Sci. 45:259265.Google Scholar
McCarty, L. B. and Miller, G. 2002. Managing Bermudagrass Turf: Selection, Construction, Cultural Practices, and Pest Management Strategies. Chelsea, MI Ann Arbor Press. 221 p.Google Scholar
McCullough, P. E., Liu, H., and McCarty, L. B. 2005. Response of six dwarf-type bermudagrasses to trinexapac-ethyl. HortSci. 40:460462.CrossRefGoogle Scholar
McCullough, P. E., Liu, H., McCarty, L. B., and Whitwell, T. 2004. Response of ‘TifEagle’ bermudagrass to seven plant growth regulators. HortSci. 39:17591762.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Petrovic, A. M., White, R. A., and Klingerman, M. 1985. Annual bluegrass growth and quality as influenced by treatments of growth regulators and wetting agents. Agron. J. 77:670674.CrossRefGoogle Scholar
Salzman, F. P., Smith, R. J. Jr., and Talbert, R. E. 1989. Control and seedhead suppression of red rice (Oryza sativa) in soybeans (Glycine max). Weed Technol. 3:238243.CrossRefGoogle Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 485 p.Google Scholar
Teuton, T. C., Main, C. L., Sorochan, J. C., McElroy, J. S., Hart, W. E., Sams, C. E., and Mueller, T. C. 2008. Hybrid Kentucky bluegrass tolerance to preemergence and postemergence herbicides. Weed Technol. 22:240244.Google Scholar
Watschke, T. L., Prinster, M. G., and Brenninger, J. M. 1992. Plant growth regulators and turfgrass management. Pages 577588. in: Waddington, D. V., Carrow, R. N., and Shearman, R. C., eds. Turfgrass Agronomy Monograph 32. Madison, WI American Society of Agronomy.Google Scholar
Yelverton, F. H., Hoyle, J. A., Gannon, T. W., and Warren, L. S. 2009. Plant counts, digital image analysis, and visual ratings for estimating weed control in turf: are they correlated? Proc. South. Weed Sci. Soc. 62:399.Google Scholar
Yelverton, F. H., McCarty, L. B., and Murphy, T. R. 1997. Effects of imazameth on the growth of Paspalum notatum Flueggé: Int. Turfgrass Soc. 8:10851094.Google Scholar