Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T01:30:08.906Z Has data issue: false hasContentIssue false

Bioherbicide Safety Zones and the Plant Disease–Inoculum Density Relationship

Published online by Cambridge University Press:  20 January 2017

Graeme W. Bourdôt*
Affiliation:
AgResearch Limited, Private Bag 4749, Christchurch 8140, New Zealand
David J. Saville
Affiliation:
Saville Statistical Consulting Limited, P.O. Box 69192, Lincoln 7640, New Zealand
*
Corresponding author's E-mail: graeme.bourdot@agresearch.co.nz.

Abstract

Broad- host-range pathogens are appealing as candidates for commercial development as bioherbicides because of the wider market potential of a product that is effective against a range of weeds. But when these pathogens are able to spread in space (or time), a risk analysis is necessary. Here we test the hypothesis that a safety zone around a bioherbicide application site is adequate so long as it is wide enough to ensure that dispersing inoculum has diluted sufficiently that the density of inoculum occurring naturally in a susceptible crop is no more than doubled by the influx of bioherbicide spores. To this end the plant disease–pathogen inoculum density relationship using data from nine published experiments was modeled using the logistic equation. This revealed that a doubling of the natural spore density of a plant pathogen in the range of 103.4 to 106.7 spores/ml may generally be expected to result in unacceptable increases in disease in a susceptible crop. A doubling outside this range (< 103.4 or > 106.7) is less likely to do so. Therefore when the natural density of inoculum in a crop's environment occurs outside this range, an “acceptable” safety zone for the pathogen's use as a bioherbicide can in most cases be defined by the 1 : 1 ratio of added : natural inoculum. However, if a more “risk averse” safety zone is desired, it can be defined using a 1 : 10 ratio of added : natural inoculum.

Los patógenos presentes en un gran espectro de hospederas ya son tan atractivos candidatos para el desarrollo comercial como son los bio-herbicidas debido al mercado potencial para un producto que sea efectivo en contra de un rango amplio de malezas. Sin embargo, es necesario hacer un análisis de riesgo cuando dichos patógenos son capaces de diseminarse a través del espacio y el tiempo. En este trabajo evaluamos la hipótesis de que una zona segura alrededor del sitio de aplicación del bio-herbicida es adecuada mientras sea suficientemente amplia para garantizar que el inoculante se diluya, de tal manera que la densidad del inoculante natural en un cultivo susceptible no aumente más del doble con la introducción de las esporas del bio-herbicida. Para evaluar dicha hipótesis, se creó un modelo con una ecuación logística, utilizando la relación de densidad del inoculante patógeno-enfermedad reportada en nueve experimentos publicados. El análisis reveló que puede esperarse que vaya a ocurrir un incremento del doble en la densidad de esporas de un patógeno en un rango de 103.4 a 106.7 esporas/ml en casos de incrementos no aceptables en las enfermedades en un cultivo. Afuera del mencionado rango (<103.4 O > 106.7) es menos probable que ocurra. Por lo tanto, cuando la densidad natural de inoculante en el medio ambiente del cultivo ocurre fuera de ese rango, una zona de seguridad “aceptable” para el uso del patógeno como bio-herbicida puede definirse con un radio de 1:1 referente al inoculante agregado vs el inoculante natural. Si se desea tener una zona segura de menor riesgo, ésta puede lograrse utilizando un radio de 1:10 de inoculante agregado vs inoculante natural.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bourdôt, G. 1998. Taming a wild fungus. NZ Sci. Month May:910.Google Scholar
Bourdôt, G. W., Baird, D., Hurrell, G. A., and de Jong, M. D. 2006. Safety zones for a Sclerotinia sclerotiorum-based mycoherbicide: accounting for regional and yearly variation in climate. Biocont. Sci. Technol 16:345358.Google Scholar
Bourdôt, G. W., Saville, D. J., Hurrell, G. A., Harvey, I. C., and de Jong, M. D. 2000. Risk analysis of Sclerotinia sclerotiorum for biological control of Cirsium arvense in pasture: sclerotium survival. Biocont. Sci. Technol 10:411425.Google Scholar
de Jong, M. D., Aylor, D. E., and Bourdôt, G. W. 1999. A methodology for risk analysis of plurivorous fungi in biological weed control: Sclerotinia sclerotiorum as a model. BioControl 43:397419.Google Scholar
de Jong, M. D., Bourdôt, G. W., Hurrell, G. A., Saville, D. J., Erbrink, H., and Zadoks, J. C. 2002. Risk analysis for biological control—simulating dispersal of Sclerotinia sclerotiorum (Lib.) de Bary ascospores from a pasture after biological control of Cirsium arvense (L.) Scop. Aerobiologia 18:211222.Google Scholar
de Jong, M. D., Scheepens, P. C., and Zadoks, J. C. 1990. Risk analysis for biological control: a Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum . Plant Dis 74:189194.Google Scholar
Elmer, W. H. and Ferrandino, F. J. 1995. Influence of spore density, leaf age, temperature, and dew periods on septoria leaf spot of tomato. Plant Dis 79:287290.Google Scholar
Graham, G. L., Peng, G., Bailey, K. L., and Holm, F. A. 2006. Effect of dew temperature, post-inoculation condition, and pathogen dose on suppression of scentless chamomile by Colletotrichum truncatum . Biocont. Sci. Technol 16:271280.Google Scholar
Kurt, S. and Tok, F. M. 2006. Influence of inoculum concentration, leaf age, temperature, and duration of leaf wetness on Septoria blight of parsley. Crop Prot 25:556561.Google Scholar
Lucas, J. A. 2002. Plant disease epidemics. Pages 7286. In Lucas, J. A. Plant Pathology and Plant Pathogens. Oxford: Blackwell.Google Scholar
Makowski, R. M. D. 1993. Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporoides f. sp. malvae . Phytopathology 83:12291234.Google Scholar
Masangkay, R. F., Paulitz, T. C., Hallet, S. G., and Watson, A. K. 1999. Factors influencing biological control of Sphenoclea zeylanica with Alternaria alternata f. sp. sphenocleae . Plant Dis 83:10191024.Google Scholar
Nao, M. 2008. Effects of inoculum density, leaf wetness duration and nitrate concentration on the occurrence of lettuce leaf spot. J. Gen. Plant Pathol 74:208212.Google Scholar