Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-20T08:47:58.827Z Has data issue: false hasContentIssue false

Weed Control in Cotton by Combinations of Microencapsulated Acetochlor and Various Residual Herbicides Applied Preemergence

Published online by Cambridge University Press:  20 January 2017

Charles W. Cahoon*
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Alan C. York
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
David L. Jordan
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Wesley J. Everman
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Richard W. Seagroves
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Lewis R. Braswell
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Katherine M. Jennings
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Corresponding author's E-mail:


Residual herbicides are routinely recommended to aid in control of glyphosate-resistant (GR) Palmer amaranth in cotton. Acetochlor, a chloroacetamide herbicide, applied PRE, controls Palmer amaranth. A microencapsulated (ME) formulation of acetochlor is now registered for PRE application in cotton. Field research was conducted in North Carolina to evaluate cotton tolerance and Palmer amaranth control by acetochlor ME alone and in various combinations. Treatments, applied PRE, consisted of acetochlor ME, pendimethalin, or no herbicide arranged factorially with diuron, fluometuron, fomesafen, diuron plus fomesafen, and no herbicide. The PRE herbicides were followed by glufosinate applied twice POST and diuron plus MSMA directed at layby. Acetochlor ME was less injurious to cotton than pendimethalin. Acetochlor ME alone or in combination with other herbicides reduced early season cotton growth 5 to 8%, whereas pendimethalin alone or in combinations injured cotton 11 to 13%. Early season injury was transitory, and by 65 to 84 d after PRE treatment, injury was no longer noticeable. Before the first POST application of glufosinate, acetochlor ME and pendimethalin controlled Palmer amaranth 84 and 64%, respectively. Control by acetochlor ME was similar to control by diuron plus fomesafen and greater than control by diuron, fluometuron, or fomesafen alone. Greater than 90% control was obtained with acetochlor ME mixed with diuron or fomesafen. Palmer amaranth control was similar with acetochlor ME plus a full or reduced rate of fomesafen. Acetochlor ME controlled large crabgrass and goosegrass at 91 and 100% compared with control at 83 and 91%, respectively, by pendimethalin. Following glufosinate, applied twice POST, and diuron plus MSMA, at layby, 96 to 99% control was obtained late in the season by all treatments, and no differences among herbicide treatments were noted for cotton yield. This research demonstrated that acetochlor ME can be safely and effectively used in cotton weed management programs.

Los herbicidas residuales son rutinariamente recomendados para asistir en el control de Amaranthus palmeri resistente a glyphosate en campos de algodón. Acetochlor, un herbicida del grupo chloroacetamide, aplicado PRE controla A. palmeri. Una formulación microencapsulada (ME) de acetochlor está actualmente registrada para aplicaciones PRE en algodón. Se realizó una investigación de campo en North Carolina para evaluar la tolerancia del algodón y el control de A. palmeri con acetochlor ME solo y en varias combinaciones. Los tratamientos aplicados PRE fueron acetochlor ME, pendimethalin, y un testigo sin herbicida, arreglados factorialmente con diuron, fluometuron, fomesafen, diuron más fomesafen, y un testigo sin herbicida. Los herbicidas PRE fueron seguidos por glufosinate aplicado dos veces POST y diuron más MSMA dirigido a la base del cultivo antes del cierre del dosel (layby). Acetochlor ME causó menos daño al algodón que pendimethalin. Acetochlor ME solo o en combinación con otros herbicidas redujo el crecimiento del algodón 5 a 8% temprano durante la temporada, mientras que pendimethalin solo o en combinaciones dañó el algodón 11 a 13%. El daño temprano durante la temporada fue transitorio y a 65 y 84 d después del tratamiento PRE, el daño ya no se notaba. Antes de la primera aplicación POST de glufosinate, acetochlor ME y pendimethalin controlaron A. palmeri 84 y 64%, respectivamente. El control con acetochlor ME fue similar al control con diuron más fomesafen y fue mayor que el control con diuron, fluometuron, o fomesafen solos. Se obtuvo un control superior a 90% con acetochlor ME mezclado con diuron o fomesafen. El control de A. palmeri fue similar con acetochlor ME más fomesafen a una dosis completa o una dosis reducida. Acetochlor ME controló Digitaria sanguinalis y Eleusine indica a 91 y 100% al compararse con un control de 83 a 91% con pendimethalin, respectivamente. Después de las dos aplicaciones POST de glufosinate y la aplicación layby de diuron más MSMA, se obtuvo 96 a 99% de control al final de la temporada con todos los tratamientos, y no se notaron diferencias en el rendimiento del algodón entre ninguno de los tratamientos. Esta investigación demostró que acetochlor ME puede ser usado en forma segura y efectiva en programas de manejo de malezas en algodón.

Research Article
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee.


Literature Cited

Anonymous (2015a) Dual Magnum® herbicide label. Syngenta Publication No. SLP 816A-L1U 1210. Greensboro, NC: Syngenta Crop Protection. 54 pGoogle Scholar
Anonymous (2015b) Warrant® herbicide label. Monsanto Publication No. 36067M4-2. St. Louis, MO: Monsanto Company. 8 pGoogle Scholar
Askew, SD, Bailey, WA, Scott, GH, Wilcut, JW (2002) Economic assessment of weed management for transgenic and nontransgenic cotton in tilled and nontilled systems. Weed Sci 50:512520 Google Scholar
Askew, SD, Wilcut, JW (1999) Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol 13:309314 Google Scholar
Bradley, AL, York, AC, Yelverton, FH, Culpepper, AS, Batts, RB (2001) Fluometuron carryover to tobacco. J Cotton Sci 5:184196 Google Scholar
Branson, JW, Smith, KL, Barrentine, JL (2005) Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol 19:404410 Google Scholar
Braswell, LR, York, AC, Jordan, DL, Gannon, TW, Cahoon, CW (2014) Weed management in cotton with fluridone. Page 72 in Proceedings of the 67th Southern Weed Science Society Annual Meeting. Birmingham, AL: Southern Weed Science Society Google Scholar
Brown, SM, Dowler, CC, Vencill, WK, Wilcut, JW (1993) Cotton and nutsedge response to Dual® (metolachlor) herbicide in Georgia. Page 1520 in Proceedings of the 1993 Beltwide Cotton Conferences. New Orleans, LA National Cotton Council of America Google Scholar
Buchanan, GA, Burns, ER (1970) Influence of weed competition on cotton. Weed Sci 18:149154 Google Scholar
Cahoon, CW, York, AC, Jordan, DL, Everman, WJ, Seagroves, RW (2014) An alternative to multiple protoporphyrinogen oxidase inhibitor applications in no-till cotton. Weed Technol 28:5871 Google Scholar
Cahoon, CW, York, AC, Jordan, DL, Seagroves, RW, Everman, WJ, Jennings, KM (2015) Cotton response and Palmer amaranth control with pyroxasulfone applied preemergence and postemergence. J Cotton Sci 19:212223 Google Scholar
Corbett, JL, Askew, SD, Thomas, WE, Wilcut, JW (2004) Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 18:443453 Google Scholar
Culpepper, AS (2015) Weed management in cotton. Pages 70118 in Georgia Cotton Production Guide. CSS-15-01. Athens, GA: The University of Georgia Cooperative Extension Service. Accessed April 27, 2015Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Culpepper, AS, Moore, T, Ethredge, R, Briggs, W (2012) Cotton injury as influenced by herbicides, irrigation, seedling vigor, seedling depth, and environmental stresses. Page 1515 in Proceedings of the 2012 Beltwide Cotton Conferences. Orlando, FL National Cotton Council of America Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 195212 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ: John Wiley & Sons Google Scholar
Culpepper, AS, York, AC (1998) Weed management in glyphosate-tolerant cotton. J Cotton Sci 2:174185 Google Scholar
Culpepper, AS, York, AC (1999) Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol 13:411420 Google Scholar
Culpepper, AS, York, AC, Roberts, P, Whitaker, JR (2009) Weed control and crop response to glufosinate applied to ‘PHY 485 WRF' cotton. Weed Technol 23:356362 Google Scholar
Doherty, RC, Barber, T, Collie, L, Meier, J (2014) Evaluation of Dual Magnum®, Warrant®, and Zidua® preemergence in Arkansas cotton. Page 1069 in Proceedings of the 2014 Beltwide Cotton Conferences. New Orleans, LA National Cotton Council of America Google Scholar
Dunnett, CW (1955) A multicomparisons procedure for comparing several treatments with a control. J Am Stat Assoc 50:10961121 Google Scholar
Ellis, JM, Griffin, JL (2002) Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol 16:541547 Google Scholar
Eure, PM, Culpepper, AS, Merchant, RM (2013) An assessment of cotton tolerance to pyroxasulfone, acetochlor, and S-metolachlor. Page 600661 in Proceedings of the 2013 Beltwide Cotton Conferences. San Antonio, TX National Cotton Council of America Google Scholar
Everman, WJ, Clewis, SB, York, AC, Wilcut, JW (2009) Weed control and yield with flumioxazin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23:391397 Google Scholar
Faircloth, WH, Patterson, MG, Monks, CD, Goodman, WR (2001) Weed management programs for glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol 15:544551 Google Scholar
Fernandez-Cornejo, J, Wechsler, S, Livingston, M, Mitchell, L (2014) Genetically engineered crops in the United States. Washington, DC: U.S. Department of Agriculture, Economic Research Service Rep 162. 60 pGoogle Scholar
Frans, R E, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. Champaign, IL: Southern Weed Science Society Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Geier, PW, Stahlman, PW, Frihauf, JC (2006) KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol 20:622626 Google Scholar
Gianessi, LP (2005) Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag Sci 61:241245 Google Scholar
Gianessi, LP (2008) Economic impacts of glyphosate resistant crops. Pest Manag Sci 64:3346–352Google Scholar
Givens, WA, Shaw, DR, Johnson, WG, Weller, SC, Young, BG, Wilson, RG, Owen, MDK, Jordan, D (2009) A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol 23:156161 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. Accessed April 25, 2015Google Scholar
Jordan, DL, Frans, RE, McClelland, MR (1993a) Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol 7:216219 Google Scholar
Jordan, DL, York, AC, McClelland, MR, Frans, RF (1993b) Clomazone as a component in cotton (Gossypium hirsutum) herbicide programs. Weed Technol 7:202211 Google Scholar
Jordan, D, York, A, Seagroves, R, Everman, W, Clewis, B, Wilcut, J, Shaw, D, Owen, M, Wilson, R, Young, B, Weller, S (2014) Economic value of herbicide programs and implications for resistance management in North Carolina. Crop Manag 13. DOI: Google Scholar
Keeling, JW, Abernathy, JR (1989) Preemergence weed control in a conservation tillage cotton (Gossypium hirsutum) cropping system on sandy soils. Weed Technol 3:182185 Google Scholar
Kleifeld, Y, Blumenfield, T, Herzlinger, G, Graph, S, BuxBaum, H, Bargutti, A (1988) The use of fomesafen for pre-emergence weed control in cotton. Phytoparasitica 16:133144 Google Scholar
Knezevic, SZ, Datta, A, Scott, J, Porpiglia, PJ (2009) Dose-response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439 Google Scholar
Knezevic, SZ, Evans, SP, Blankenship, EE, Van Acker, RC, Lindquist, JL (2002) Critical period for weed control: the concept and data analysis. Weed Sci 50:773786 Google Scholar
Main, CL, Faircloth, JC, Steckel, LE, Culpepper, AS, York, AC (2012) Cotton tolerance to fomesafen applied preemergence. J Cotton Sci 16:8087 Google Scholar
Mehlich, A (1984) Photometric determination of humic matter in soils, a proposed method. Commun Soil Sci Plant Anal 15:14171422 Google Scholar
Meijer, AD, Edmisten, KL (2015) Cotton production with conservation tillage. Pages 168176 in 2015 Cotton Information. Publ. AG-417. Raleigh, NC: North Carolina Cooperative Extension Service Google Scholar
Mueller, TC, Boswell, BW, Mueller, SS, Steckel, LE (2014) Dissipation of fomesafen, saflufenacil, sulfentrazone, and flumioxazin from a Tennessee soil under field conditions. Weed Sci 62:664671 Google Scholar
Nandula, VK, Reddy, KN, Koger, CH, Poston, DH, Rimando, AM, Duke, SO, Bond, JA, Ribeiro, DN (2012) Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac. Weed Sci 60:179188 Google Scholar
[NCDA&CS] North Carolina Department of Agriculture and Consumer Services (2014) Annual Crop Summary. Accessed April 25, 2015Google Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, IA (2011) Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weed Technol 25:335343 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Parker, DC, Simmons, FW, Wax, LM (2005) Fall and early preplant application timing effects on persistence and efficacy of acetamide herbicides. Weed Technol 19:613 Google Scholar
Parker, RG, York, AC, Jordan, DL (2006) Weed control in glyphosate-resistant corn as affected by preemergence herbicide and timing of postemergence herbicide application. Weed Technol 20:564570 Google Scholar
Poirier, AH, York, AC, Jordan, DL, Chandi, A, Everman, WJ, Whitaker, JR (2014) Distribution of glyphosate- and thifensulfuron-resistant Palmer amaranth (Amaranthus palmeri) in North Carolina. Int J Agron 2014. DOI: Google Scholar
Rauch, BJ, Bellinder, RR, Brainard, DC (2007) Using common ragweed (Ambrosia artemisiifolia) control as a basis for reduction of fomesafen use in snap and dry beans (Phaseolus vulgaris). Weed Technol 21:623628 Google Scholar
Riar, DS, Norsworthy, JK, Griffith, GM (2011) Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol 25:526534 Google Scholar
Riar, DS, Norsworthy, JK, Johnson, DB, Starkey, CE, Lewis, A (2012) Efficacy and cotton tolerance to Warrant® . Page 1540 in Proceedings of the 2012 Beltwide Cotton Conferences. Orlando, FL National Cotton Council of America Google Scholar
Richardson, RJ, Wilson, HP, Hines, TE (2007) Preemergence herbicides followed by trifloxysulfuron postemergence in cotton. Weed Technol 21:16 Google Scholar
Roberts, RK, English, BC, Gao, Q, Larson, JA (2006) Simultaneous adoption of herbicide-resistant and conservation-tillage cotton technologies. J Agric Appl Econ 38:629643 Google Scholar
Scher, HB, Rodson, M, Lee, K (1998) Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate of aminoplast chemistry. Pestic Sci 54:394400 Google Scholar
Scott, B, Smith, K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. Little Rock, AR: University of Arkansas Cooperative Extension Service Publication FSA2152. 4 pGoogle Scholar
Scott, GH, Askew, SD, Wilcut, JW (2002) Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol 16:191198 Google Scholar
Shaner, DL (2000) The impact of glyphosate-resistant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320326 Google Scholar
Snipes, CE (1991) Preemergence velvetleaf (Abutilon theophrasti) control in cotton (Gossypium hirsutum). Weed Technol 5:142146 Google Scholar
Solano, F, Schrader, JW, Coble, HD (1976) Control of spurred anoda in cotton. Weed Sci 24:553556 Google Scholar
Sosnoskie, LM, Culpepper, AS (2014) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) increases herbicide use, tillage, and hand-weeding in Georgia cotton. Weed Sci 62:393402 Google Scholar
Sosnoskie, LM, Kichler, JM, Wallace, RD, Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Technol 59:321325 Google Scholar
Steele, GL, Porpiglia, PJ, Chandler, JM (2005) Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol 19:866869 Google Scholar
[USDA-AMS] U.S. Department of Agriculture—Agricultural Marketing Service (2014) Cotton Varieties Planted 2014 Crop. Washington, DC: U.S. Department of Agriculture Publication mp_cn 833. 9 pGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2011a) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol 25:183191 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS, Sosnoskie, LM (2011b) Residual herbicides for Palmer amaranth control. J Cotton Sci 15:8999 Google Scholar
Wilcut, JW, York, AC, Jordan, DL (1995) Weed management systems for oil seed crops. Pages 343400 in Smith, AE, ed. Handbook of Weed Management Systems. New York: Marcel Dekker Google Scholar
Wilson, DG, York, AC, Jordan, DL (2007) Effect of row spacing on weed management in glufosinate-resistant cotton. Weed Technol 21:489495 Google Scholar
Wilson, RG, Young, BG, Matthews, JL, Weller, SC, Johnson, WG, Jordan, DL, Owen, MDK, Dixon, PM, and Shaw, DR (2011) Benchmark study on glyphosate-resistant cropping systems in the United States, part 4: weed management practices and effects on weed populations and soil seed banks. Pest Manag Sci 67:771780 Google Scholar
York, AC (1993) Peanut response to fluometuron applied to a preceding cotton crop. Peanut Sci 20:111114 Google Scholar
York, AC (2015) Weed Management in Cotton. Pages 80130 in 2015 Cotton Information. Publication AG-417. Raleigh, NC: North Carolina Cooperative Extension Service Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar