Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.731 Render date: 2021-03-05T23:14:03.203Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Snap Bean (Phaseolus vulgaris) Tolerance to Halosulfuron PRE, POST, or PRE followed by POST

Published online by Cambridge University Press:  20 January 2017

Brandy D. Silvey
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Wayne E. Mitchem
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Andrew W. Macrae
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Corresponding
E-mail address:

Abstract

A field experiment was conducted in 1996 and 1997 to determine snap bean tolerance to halosulfuron based on crop injury, height, and yield. Halosulfuron was applied preemergence (PRE), postemergence (POST), and sequentially PRE followed by (fb) POST at 35, 53, and 70 g ai/ha, respectively. For comparison, a hand-weeded check was included. When data were averaged across years and halosulfuron rates, halosulfuron PRE, POST, and PRE fb POST provided similar yellow nutsedge control (74 to 82%) at snap bean harvest. Halosulfuron PRE resulted in 4% snap bean injury at harvest. Similarly, halosulfuron PRE fb POST resulted in 5% injury, while halosulfuron POST caused the most damage at 8%. Snap bean height at harvest was reduced 14% with halosulfuron POST compared to the weed-free check, with only 5 and 6% reduction caused by halosulfuron PRE and PRE fb POST, respectively. Halosulfuron POST reduced yield 39% compared to the weed-free check, while the PRE and PRE fb POST application timings produced yield similar to the check. When averaged across years and halosulfuron application timings, an increase in halosulfuron rate had no effect on yellow nutsedge control or snap bean yield. A linear trend was found for snap bean injury and plant height at harvest with snap bean injury increasing with an increase in halosulfuron rate while snap bean plant height decreased with an increase in halosulfuron rate. Application of halosulfuron PRE is the safest means to control yellow nutsedge in snap bean in North Carolina.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ackley, J. A., Wilson, H. P., and Hines, T. E. 1996. Yellow nutsedge (Cyperus esculentus) control POST with acetolactate synthase-inhibiting herbicides. Weed Technol. 10:576580.CrossRefGoogle Scholar
Anonymous. 2004. Sandea herbicide. Technical release, Gowan Company, Yuma, AZ 85366.Google Scholar
Blum, R. R., Isgrigg, J. III, and Yelverton, F. H. 2000. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (C. esculentus) control in bermudagrass (Cynodon dactylon) turf. Weed Technol. 14:357365.CrossRefGoogle Scholar
Boyette, M. D. and Sumner, P. E. 1994. Harvesting and postharvest handling. In Adams, D. B., Schultheis, J. R., and Monks, C. D., eds. Commercial Production of Edible Beans and Southern Peas. North Carolina Cooperative Extension Service. Publication AG-513.Google Scholar
Grichar, W. J., Besler, B. A., and Brewer, K. D. 2003. Purple nutsedge control and potato (Solanum tuberosum) tolerance to sulfentrazone and halosulfuron. Weed Technol. 17:485490.CrossRefGoogle Scholar
Molin, W. T., Maricic, A. A., Khan, R. A., and Mancino, C. F. 1999. Effect of MON 12037 on the growth and tuber viability of purple nutsedge (Cyperus rotundus). Weed Technol. 13:15.CrossRefGoogle Scholar
Monks, D. W. and Monks, C. D. 1994. Weed Management. In Adams, D. B., Schultheis, J. R., and Monks, C. D., eds. Commercial Production of Edible Beans and Southern Peas. North Carolina Cooperative Extension Service. Publication AG-513.Google Scholar
[NCDA & CS] North Carolina Department of Agriculture and Consumer Services. 2003. North Carolina Agricultural Statistics 2003. North Carolina Department of Agriculture and Consumer Services and the U.S. Department of Agriculture.Google Scholar
Neary, P. E. and Majek, B. A. 1990. Common cocklebur (Xanthium strumarium) interference in snap beans (Phaseolus vulgaris). Weed Technol. 4:743748.CrossRefGoogle Scholar
Nelson, K. A. and Renner, K. A. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technol. 16:512519.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 2005. SAS/STAT User's Guide. Release 9.1.3, Service Pack 2. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Vencill, W. K., Richburg, J. S. III, Wilcut, J. W., and Hawf, L. R. 1995. Effect of MON 12037 on purple (Cyperus rotundus) and yellow (Cyperus esculentus) nutsedge. Weed Technol. 9:148152.CrossRefGoogle Scholar
Weaver, S. E., Kropff, M. J., and Groeneveld, R. M U. 1992. The critical period of weed interference. Weed Res. 40:302307.CrossRefGoogle Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11:308317.CrossRefGoogle Scholar
William, R. D. and Warren, G. F. 1975. Competition between purple nutsedge and vegetables. Weed Sci. 23:317323.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Snap Bean (Phaseolus vulgaris) Tolerance to Halosulfuron PRE, POST, or PRE followed by POST
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Snap Bean (Phaseolus vulgaris) Tolerance to Halosulfuron PRE, POST, or PRE followed by POST
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Snap Bean (Phaseolus vulgaris) Tolerance to Halosulfuron PRE, POST, or PRE followed by POST
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *