Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-31T19:01:37.867Z Has data issue: false hasContentIssue false

Performance of Different Herbicides in a Dry-Seeded Rice System in Sri Lanka

Published online by Cambridge University Press:  20 January 2017

Bhagirath S. Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
Anuruddika S.K. Abeysekara
Affiliation:
Rice Research and Development Institute, Batalagoda, Sri Lanka
Sakinda D. Kulatunga
Affiliation:
Rice Research and Development Institute, Batalagoda, Sri Lanka
Upali B. Wickrama
Affiliation:
Rice Research and Development Institute, Batalagoda, Sri Lanka
*
Corresponding author's E-mail: b.chauhan@irri.org

Abstract

Dry-seeded rice systems are an emerging production technology in many Asian countries. A field study was conducted in 2011 and 2012 at the farm of the Rice Research and Development Institute, Batalagoda, Sri Lanka, to evaluate the performance of different herbicides in a dry-seeded rice system. Weed control treatments were nontreated (weedy), pretilachlor plus pyribenzoxim, cyhalofop-butyl, thiobencarb plus propanil, propanil, and bispyribac-sodium plus metamifop. All these POST herbicides were applied at 8 d after sowing, followed by an MCPA spray at 20 d after sowing. The dominant weeds in the study were barnyardgrass, Chinese sprangletop, and knotgrass. All herbicide treatments provided similar weed control, which ranged from 82 to 99%. Weeds in the nontreated plots reduced rice grain yield by 58 to 79% compared with the herbicide-treated plots. All herbicide-treated plots, except cyhalofop-butyl-treated ones, produced similar grain yield, which ranged from 3.7 to 4.2 t ha−1 in 2011 and from 6.0 to 7.0 t ha−1 in 2012. The results of our study suggest that different herbicides provided similar weed control and therefore different herbicides can be rotated in different seasons to reduce selection pressure on weeds.

Los sistemas de siembra en seco de arroz son una tecnología que está surgiendo en muchos países asiáticos. En 2011 y 2012, se realizó un experimento de campo en la finca del Instituto de Investigación y Desarrollo del Arroz, Batalagoda, Sri Lanka, para evaluar el desempeño de diferentes herbicidas en un sistema de arroz de siembra en seco. Los tratamientos de control de malezas fueron sin-tratamiento (enmalezado), pretilachlor más pyribenzoxim, cyhalofop-butyl, thiobencarb más propanil, propanil, y bispyribac-sodium más metamifop. Todos estos herbicidas POST fueron aplicados a 8 días después de la siembra, seguidos de una aspersión con MCPA a 20 días después de la siembra. Las malezas dominantes en el estudio fueron Echinochloa crus-galli, Leptochloa chinensis, y Paspalum distichum. Todos los tratamientos de herbicidas brindaron un control de malezas similar, el cual varió entre 82 y 99%. Las malezas en las parcelas sin tratamiento redujeron el rendimiento de grano del arroz en 58 a 79%, al compararse con las parcelas tratadas con herbicidas. Todas las parcelas tratadas con herbicidas, excepto aquellas tratadas con cyhalofop-butyl, produjeron un rendimiento de grano similar, el cual varió entre 3.7 a 4.2 t ha−1 en 2011 y entre 6.0 y 7.0 t ha−1 en 2012. Los resultados de nuestro estudio sugieren que los diferentes herbicidas brindaron un control de malezas similar, y por lo tanto, diferentes herbicidas pueden ser rotados en diferentes temporadas de producción para reducir la presión de selección sobre las malezas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abeysekera, A.S.K., Herath, H.M.S., Wickrame, U. B., and Johnson, D. E. 2010. Improving crop establishment and reducing losses from weeds in direct-seeded rice in Sri Lanka. Pages 151166 in Palis, F. G. et al., eds. Research to Impact: Case Studies for Natural Resource Management for Irrigated Rice in Asia. Los Baños, Philippines International Rice Research Institute.Google Scholar
Amarsinghe, L., Marambe, B., and Rajapakse, R.P.A.D. 1998. Effect of quinclorac on weed control growth and yield of rice (Oryza sativa L.) in mid-country region of Sri Lanka. Sri Lankan J. Agric. Sci. 36:2434.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26:113.Google Scholar
Chauhan, B. S. and Abugho, S. B. 2013. Weed management in mechanized-sown, zero-till dry-seeded rice. Weed Technol. 27:2833.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121:226231.Google Scholar
Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J., and Jat, M. L. 2012. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv. Agron. 117:315369.Google Scholar
Chauhan, B. S. and Opeña, J. 2012. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crops Res. 137:5669.Google Scholar
GenStat 8.0. 2005. GenStat Release 8 Reference Manual. Oxford, UK VSN International. P. 343.Google Scholar
Herath, H.M.S., Abeysekera, A.S.K., and Senevirathne, R. M. 2007. Effect of pretilachlor + pyribenzoxim 320 EC on weed control in wet-seeded rice in Sri Lanka. in Marambe, B. et al., eds. Proceedings of the 21st Asian Pacific Weed Science Society Conference, Colombo, Sri Lanka.Google Scholar
Herath Banda, R. M., Dhanapala, M. P., Silva, G.A.C., and Hossain, M. 1998. Constraints to increased rice production in Sri Lanka. Paper presented at the workshop on prioritization of rice research, Los Baños, Philippines. International Rice Research Institute.Google Scholar
Jayatillake, H. M. 2003. Rice in major irrigation schemes—potential for increased cropping intensities with limiting water resources. Pages 4163 in D.S.d.Z. Abeysiriwardena et al., eds. Congress, Rice 2000. Peradeniya, Sri Lanka Department of Agriculture.Google Scholar
Mahajan, G., Chauhan, B. S., and Gill, M. S. 2011. Optimal nitrogen fertilization timing and rate in dry-seeded rice in northwest India. Agron. J. 103:16761682.Google Scholar
Mahajan, G., Chauhan, B. S., Timsina, J., Singh, P. P., and Singh, K. 2012. Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Res. 134:5970.Google Scholar
Manthrithilake, H. and Molden, D. 2010. Water and paddy. in Dissanayake, D.M.N., ed. Congress, Rice 2010. Gannoruwa, Sri Lanka Rice Research and Development Institute.Google Scholar
Marambe, B. 2002. Emerging weed problems in wet-seeded rice due to herbicide use in Sri Lanka. Abstracts: International Rice Congress, Beijing, China, September 16–20, 2002.Google Scholar
Pandit, V., Dao, C. X., Baharol, H., Wongyala, P., Kotzian, R., and Allard, J.-L. 2007. Solito® a new herbicide for broad spectrum weed control in Asian direct-seeded wet-sown rice. in Marambe, B. et al., eds. Proceedings of the 21st Asian Pacific Weed Science Society Conference, Colombo, Sri Lanka. The Asian Pacific Weed Science Society.Google Scholar
Singh, S., Ladha, J. K., Gupta, R. K., Bhusan, L., Rao, A. N., Sivaprasad, B., and Singh, P. P. 2007. Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa). Crop Prot. 26:518524.Google Scholar
Tuong, T. P. and Bouman, B.A.M. 2003. Rice production in water-scarce environments. Pages 5367 in Kijne, J. W. et al., eds. Water Productivity in Agriculture: Limits and Opportunities for Improvements. Wallingford, UK CABI Publishing.Google Scholar
Weerakoon, W. M. W., Mutunayake, M.M.P., Bandara, C., Rao, A. N., Bhandari, D. C., and Ladha, J. K. 2011. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Res. 121:5363.Google Scholar