Skip to main content Accessibility help
×
Home

Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia

Published online by Cambridge University Press:  20 January 2017

Lovreet S. Shergill
Affiliation:
School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Benjamin Fleet
Affiliation:
School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Christopher Preston
Affiliation:
School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Gurjeet Gill
Affiliation:
School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Corresponding

Abstract

Smooth barley has emerged as a problematic weed in cereal crops of South Australia. After the recent reports of herbicide resistance and increase in seed dormancy in smooth barley, it was considered important to determine the herbicide resistance status and seedbank behavior of field populations of this weed species. A field survey was undertaken in the Upper North and Eyre Peninsula regions of South Australia in October 2012. Of the 90 smooth barley populations screened for resistance to quizalofop, 15% exhibited some level of resistance and 85% were susceptible. Resistance to acetolactate synthase (ALS)-inhibiting herbicides was low, with only 3 and 12% of populations classified as developing resistance to imazamox + imazapyr and sulfosulfuron, respectively. No multiple resistance patterns were observed; however, two ALS-inhibiting herbicide-resistant populations had sulfonylurea-to-imidazolinone cross-resistance. At the start of the growing season, the majority of smooth barley populations emerged rapidly (median 50% time to emergence [T 50] = 8 d). In contrast, some populations of smooth barley displayed an extremely slow emergence pattern, with T 50 of > 20 d. No direct linkage between seed dormancy and herbicide resistance was observed. However, two acetyl coenzyme A carboxylase-inhibiting herbicide-resistant populations were highly dormant and exhibited delayed emergence. The majority of smooth barley populations showed low-level or no seedbank persistence, but a few populations persisted for 1 yr. However, some weed populations had up to 20% seedbank persistence from 1 yr to the next. Overall there was a strong negative relationship between smooth barley seedling emergence and the level of seed persistence (R 2 = 0.84, P < 0.05). This association indicated that greater seed dormancy could be responsible for extended persistence of the seedbank of this weed species. The study provides valuable insights into the general pattern of herbicide resistance and the behavior of the seedbank of smooth barley populations on South Australian farms.

Hordeum glaucum ha emergido como una maleza problemática en los cultivos de cereales en el Sur de Australia. Después de reportes recientes de resistencia a herbicidas y el incremento en la dormancia de la semilla en H. glaucum, se consideró importante determinar el estatus de la resistencia a herbicidas y el comportamiento del banco de semillas de poblaciones de campo de esta especie. Se realizó un estudio observacional de campo en las regiones Alta Norte y de la península Eyre en el Sur de Australia, en Octubre 2012. De las 90 poblaciones de H. glaucum evaluadas por resistencia a quizalofop, 14% exhibieron algún nivel de resistencia y 86% fueron susceptibles. La resistencia a herbicidas inhibidores de acetolactate synthase (ALS) fue baja, ya que solamente 3 y 12% de las poblaciones fueron clasificadas como desarrollando resistencia a imazamox + imazapyr y sulfosulfuron, respectivamente. No se observó ningún patrón de resistencia múltiple. Sin embargo, dos poblaciones resistentes a herbicidas inhibidores de ALS tuvieron resistencia cruzada de sulfonylurea a imidazolinone. Al inicio de la temporada de crecimiento, la mayoría de las poblaciones de H. glaucum emergieron rápidamente (mediana del tiempo de 50% de emergencia [T 50] = 8 d). En contraste, algunas poblaciones de H. glaucum mostraron un patrón de emergencia extremadamente tardío, con T 50 de > 20 d. No se observó ninguna relación directa entre la dormancia de la semilla y la resistencia a herbicidas. Sin embargo, dos poblaciones resistentes a herbicidas inhibidores de acetyl coenzyme A carboxylase tuvieron una alta dormancia y exhibieron un retraso en la emergencia. La mayoría de las poblaciones de H. glaucum mostraron de bajo a ninguna persistencia del banco de semillas, pero algunas poblaciones persistieron por 1 año. Sin embargo, algunas poblaciones tuvieron hasta 20% de persistencia del banco de semillas de un año al otro. En general, hubo una fuerte relación negativa entre la emergencia de plántulas de H. glaucum y el nivel de persistencia de la semillas (R 2 = 0.84, P < 0.05). Esta asociación indicó que una mayor dormancia de la semilla podría ser responsable por la persistencia extendida del banco de semillas de esta especie de maleza. Este estudio brinda una observación valiosa sobre el patrón general de resistencia a herbicida y el comportamiento del banco de semillas de poblaciones de H. glaucum en fincas del Sur de Australia.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Beckie, HJ, Warwick, SI, Sauder, CA (2012) Basis for herbicide resistance in Canadian populations of wild oat (Avena fatua). Weed Sci 60:1018 CrossRefGoogle Scholar
Broster, J, Koetz, E, Wu, H (2012) Herbicide resistance frequencies in ryegrass (Lolium spp.) and other grass species in Tasmania. Plant Prot Q 27:36 Google Scholar
Broster, JC, Koetz, EA, Wu, H (2010) A survey of southern New South Wales to determine the level of herbicide resistance in brome grass and barley grass populations. Pages 274277 in Proceedings of the 17th Australasian Weeds Conference. Christchurch, New Zealand New Zealand Plant Protection Society Google Scholar
Buhler, DD, Gunsolus, JL (1996) Effect of date of preplant tillage and planting on weed populations and mechanical weed control in soybean (Glycine max). Weed Sci 44:373379 Google Scholar
Buhler, DD, Hartzler, RG, Forcella, F (1997) Implications of weed seedbank dynamics to weed management. Weed Sci 45:329336 Google Scholar
Chauhan, BS, Gill, G, Preston, C (2006a) Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Sci 54:10041012 CrossRefGoogle Scholar
Chauhan, BS, Gill, G, Preston, C (2006b) Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci 54:669676 Google Scholar
Cocks, P, Donald, C (1973) The germination and establishment of two annual pasture grasses (Hordeum leporinum Link and Lolium rigidum Gaud.). Aust J Agr Res 24:110 CrossRefGoogle Scholar
Cocks, PS, Boyce, KG, Kloot, PM (1976) The Hordeum murinum complex in Australia. Aust J Bot 24:651–62Google Scholar
Davison, AW (1971) The ecology of Hordeum Murinum L.: II. The Ruderal habit. J Ecol 59:493506 CrossRefGoogle Scholar
Délye, C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746 CrossRefGoogle Scholar
Fleet, B, Gill, G (2010) Barley grass, an emerging weed threat in southern Australian cropping systems. in Dove, H, Culvenor, R, eds. 15th Agronomy Conference. Lincoln, New Zealand Australian Society of Agronomy Google Scholar
Fleet, B, Gill, G (2012) Seed dormancy and seedling recruitment in smooth barley (Hordeum murinum ssp. glaucum) populations in southern Australia. Weed Sci 60:394400 Google Scholar
Ghersa, CM, Martínez-Ghersa, MA, Brewer, TG, Roush, ML (1994) Selection pressures for diclofop-methyl resistance and germination time of Italian ryegrass. Agron J 86:823828 CrossRefGoogle Scholar
Gill, GS, Cousens, RD, Allan, MR (1996) Germination, growth, and development of herbicide resistant and susceptible populations of rigid ryegrass (Lolium rigidum). Weed Sci 44:252256 CrossRefGoogle Scholar
Gundel, PE, Martínez-Ghersa, MA, Ghersa, CM (2008) Dormancy, germination and ageing of Lolium multiflorum seeds following contrasting herbicide selection regimes. Eur J Agron 28:606613 CrossRefGoogle Scholar
Harris, G (1961) The periodicity of germination in some grass species. N Z J Agr Res 4:253260 CrossRefGoogle Scholar
Heap, I (2015) The international survey of herbicide resistant weeds. www.weedscience.org. Accessed April 8, 2015Google Scholar
Hidayat, I (2004) Evolution and Spread of Paraquat-Resistant Barley Grasses Hordeum glaucum Steud. and H. leporinum Link. Ph.D dissertation: Adelaide, Australia: The University of Adelaide. 176 pGoogle Scholar
Jasieniuk, M, Maxwell, BD (1994) Populations genetics and the evolution of herbicide resistance in weeds. Phytoprotection 75:2535 CrossRefGoogle Scholar
Kleemann, SGL, Gill, GS (2013) Seed dormancy and seedling emergence in ripgut brome (Bromus diandrus) populations in southern Australia. Weed Sci 61:222229 Google Scholar
Llewellyn, RS, Powles, SB (2001) High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of Western Australia. Weed Technol 15:242248 Google Scholar
Malone, JM, Boutsalis, P, Baker, J, Preston, C (2014) Distribution of herbicide-resistant acetyl-coenzyme A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia. Weed Res 54:7886 CrossRefGoogle Scholar
Matthews, N, Powles, SB, Preston, C (2000) Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibiting herbicides in a Hordeum leporinum population. Pest Manag Sci 56:441447 Google Scholar
Maxwell, BD, Mortimer, AM (1994) Selection for herbicide resistance. Pages 126 in Powles, SB, Holtum, JAM, eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers Google Scholar
Owen, MJ, Goggin, DE, Powles, SB (2012) Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. Pest Manag Sci 68:757763 CrossRefGoogle ScholarPubMed
Owen, MJ, Goggin, DE, Powles, SB (2015) Intensive cropping systems select for greater seed dormancy and increased herbicide resistance levels in Lolium rigidum (annual ryegrass). Pest Manag Sci. 71:966971 Google Scholar
Owen, MJ, Michael, PJ, Renton, M, Steadman, KJ, Powles, SB (2010) Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed Res 51:133141 CrossRefGoogle Scholar
Peltzer, SC, Matson, PT (2002) How fast do the seedbanks of five annual cropping weeds deplete in the absence of weed seed input?. Pages 553555 in Proceedings of the 13th Australian Weeds Conference. Perth, Western Australia Plant Protection Society of WA Inc Google Scholar
Popay, A (1981) Germination of seeds of five annual species of barley grass. J Appl Ecol: 547558 CrossRefGoogle Scholar
Powles, SB (1986) Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat. Weed Res 26:167172 CrossRefGoogle Scholar
Powles, SB, Tucker, ES, Morgan, TR (1992) Eradication of paraquat-resistant Hordeum glaucum Steud. by prevention of seed production for 3 years. Weed Res 32:207211 CrossRefGoogle Scholar
Pratley, J (1995) Long-term investigations of the effect of tillage practices on crop production at Wagga Wagga, New South Wales. Aust J Exp Agric 35:885892 Google Scholar
Preston, C, Holtum, JAM, Powles, SB (1992) On the mechanism of resistance to paraquat in Hordeum glaucum and H. leporinum—delayed inhibition of photosynthetic O2 evolution after paraquat application. Plant Physiol 100:630636 Google Scholar
Preston, C, Powles, SB (2002) Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813 Google ScholarPubMed
Rauch, TA, Thill, DC, Gersdorf, SA, Price, WJ (2010) Widespread occurrence of herbicide-resistant Italian ryegrass (Lolium multiflorum) in Northern Idaho and Eastern Washington. Weed Technol 24:281288 CrossRefGoogle Scholar
Recasens, J, Caimons, O, Torra, J, Taberner, A (2007) Variation in seed germination and early growth between and within acetolactate synthase herbicide resistant and susceptible (Lolium rigidum) accessions. Seed Sci Technol 35:3247 Google Scholar
Roper, MM, Milroy, SP, Poole, ML (2012) Green and brown manures in dryland wheat production systems in Mediterranean-type environments. Pages 275313 (Chapter 5) in Donald, LS, ed. Advances in Agronomy. San Diego, USA: Academic Press Google Scholar
Shergill, LS, Malone, J, Boutsalis, P, Preston, C, Gill, GS (2015) Target-site point mutations conferring resistance to ACCase-inhibiting herbicides in smooth barley (Hordeum glaucum) and hare barley (Hordeum leporinum). Weed Sci 63:408415 Google Scholar
Shergill, LS, Preston, C, Boutsalis, P, Malone, J, Gill, G (2014) Amino acid substitutions in ACCase gene of barley grass (Hordeum glaucum Steud.) associated with resistance to ACCase-inhibiting herbicides. Pages 710 in Proceedings of 19th Australasian Weeds Conference. Hobart, Tasmania, Australia Tasmanian Weed Society Google Scholar
Smith, DF (1968) The growth of barley grass (Hordeum leporinum) in annual pasture. 1. Germination and establishment in comparison with other annual pasture species. Aust J Exp Agric Anim Husb 8:478483 Google Scholar
Sosnoskie, LM, Webster, TM, Culpepper, AS (2013) Glyphosate resistance does not affect Palmer amaranth (Amaranthus palmeri) seedbank longevity. Weed Sci 61:283288 Google Scholar
Tranel, D, Dekker, J (2002) Differential seed germinability in triazine-resistant and -susceptible giant foxtail (Setaria faberii). Asian J Plant Sci 1:334336 Google Scholar
Vila-Aiub, MM, Neve, P, Steadman, KJ, Powles, SB (2005) Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J Appl Ecol 42:288298 Google Scholar
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338 CrossRefGoogle Scholar
Yu, Q, Nelson, JK, Zheng, MQ, Jackson, M, Powles, SB (2007) Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci 63:918–27Google ScholarPubMed
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421 CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-wd6lz Total loading time: 0.281 Render date: 2021-01-18T20:26:33.268Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 19:54:43 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *