Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-18T13:28:27.226Z Has data issue: false hasContentIssue false

Competitive Effects of Hybrid Corn (Zea mays) on Replanted Corn

Published online by Cambridge University Press:  20 January 2017

Tye C. Shauck*
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
Reid J. Smeda
Affiliation:
Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211
*
Corresponding author's E-mail: tcs2m5@mail.missouri.edu.

Abstract

Initial corn (IC) in a replant situation, which is surviving corn from the initial planting, as well as volunteer corn from the previous season, is a competitive weed, but little is known regarding the effect of IC density on grain yield of desirable replant corn (RC). Field trials were established in central and northeast Missouri during 2008 to 2010 to determine the impact of IC on the leaf chlorophyll, stalk diameter, and grain yield of RC. Glyphosate-resistant RC was planted in 76-cm rows, with hybrid glyphosate-resistant IC established for season-long competition between rows at densities of 0 to 8 plants m−2. At vegetative growth stages with six and eight leaf collars and at tasseling (V6, V8, VT), RC leaf nitrogen levels were reduced by 5 to 30% in the presence of IC at densities of one to eight plants m−2 compared with control plants lacking competition. Stalk diameters of RC at the VT growth stage were reduced from 8 to 30% by IC as densities increased from 0.5 to 8 plants m−2. Grain yield of row corn was reduced by IC, with yield losses ranging from 7 to 81%. Growth rate and biomass accumulation of hybrid and volunteer corn from V2 to VT were compared in the greenhouse to determine if competitive potential was similar. The second filial generation (F2) of corn from hybrid (DKC ‘63-42′) corn was collected from a field in central Missouri and southeastern Nebraska. There were no statistical differences found in growth rate or biomass accumulation between hybrid and F2 corn up to VT, although F2 plant biomass was numerically (up to 41%) lower at numerous growth stages. Hybrid corn is likely to be equally or more competitive with RC than volunteer corn. This research documents that in areas where IC remains among replanted corn, the IC has a negative impact at all densities evaluated.

En una situación de resiembra, el maíz inicial (IC) el cual es el maíz sobreviviente de la siembra inicial, al igual que el maíz voluntario de la temporada anterior, son malezas competitivas, pero se conoce poco acerca del efecto de la densidad de IC en el rendimiento de grano del maíz de resiembra (RC). Se establecieron experimentos de campo en el centro y noreste de Missouri, desde 2008 a 2010, para determinar el impacto de IC en chlorophyll foliar, diámetro de tallo, y rendimiento de grano de RC. RC resistente a glyphosate fue sembrado en hileras espaciadas a 76 cm, con IC híbrido resistente a glyphosate establecido para obtener competencia durante toda la temporada de crecimiento entre las hileras a densidades de 0 a 8 plantas m−2. En los estados vegetativos de desarrollo con seis y ocho nudos foliares y en la formación de la panoja (V6, V8, VT), los niveles foliares de nitrógeno en RC se redujeron entre 5 y 30% en la presencia de IC a densidades de una a ocho plantas m−2, al compararse con plantas testigo sin competencia. El diámetro de los tallos de RC en el estado VT se redujo entre 8 y 30% al aumentar las densidad de IC de 0.5 a 8 plantas m−1. El rendimiento de grano del maíz fue reducido por el IC, con pérdidas de entre 7 y 81%. La tasa de crecimiento y la acumulación de biomasa del maíz híbrido y voluntario desde V2 a VT se comparó en el invernadero para determinar si el potencial competitivo fue similar. La segunda generación filial (F2) del maíz híbrido (DKC ‘63-42’) fue colectada de un campo de maíz en el centro de Missouri y en sureste de Nebraska. No hubo diferencias estadísticas en tasa de crecimiento o acumulación de biomasa entre híbridos y F2 de maíz hasta VT, aunque la biomasa por planta de F2 fue numéricamente más baja (hasta 41%) en varios estados de desarrollo. Es probable que el maíz híbrido sea igual o más competitivo con RC que el maíz voluntario. Esta investigación documenta que en áreas donde IC se mantiene entre maíz de resiembra, el IC tiene un impacto negativo en todas las densidades evaluadas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alms, J, Moechnig, M, Deneke, D, Vos, D (2008) Volunteer corn control effect on corn and soybean yield. Page 16 in Proceedings of 63rd Annual Meeting. Indianapolis, IN: North Central Weed Science Society Google Scholar
Andersen, RN, Ford, JH, Lueschen, WE (1982) Controlling volunteer corn (Zea mays) in soybeans (Glycine max) with diclofop and glyphosate. Weed Sci 30:132136 Google Scholar
Anonymous (2010) Volunteer corn in corn fields. Agronomic Spotlight. Technology Development by Monsanto. www.goldcountryseed.com/download_file/-/view/601/. Accessed December 30, 2013Google Scholar
Beckett, TH, Stoller, EW (1988) Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci 36:159166 Google Scholar
Beckett, TH, Stoller, EW, Wax, LM (1988) Interference of four annual weeds in corn (Zea mays). Weed Sci 36:764769 Google Scholar
Clewis, SB, Thomas, WE, Everman, WJ, Wilcut, JW (2008) Glufosinate-resistant corn interference in glufosinate-resistant cotton. Weed Technol 22:211216 Google Scholar
Cordes, JC, Johnson, WG, Scharf, P, Smeda, RJ (2004) Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol 18:9991005 Google Scholar
Flint-Garcia, SA, Jampatong, C, Darrah, LL, Mcmullen, MD (2003) Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci 43:1322 Google Scholar
Ghosheh, HZ, Holshouser, DL, Chandler, JM (1996) Influence of density of johnsongrass (Sorghum halepense) interference in field corn (Zea mays). Weed Sci 44:879883 Google Scholar
Gonzalez, PR, Salas, ML (1995) Improvement of the growth, grain yield, and nitrogen, phosphorus, and potassium nutrition of grain corn through weed control. J Plant Nutr 18:23132324 Google Scholar
Hellwig, K, Johnson, W, Scharf, P (2002) Grass weed interference and nitrogen accumulation in no-tillage corn. Weed Sci 50:757762 Google Scholar
Hondroyianni, E, Papakosta, DK, Gagianas, AA, Tsatsarelis, KA (2000) Corn stalk traits related to lodging resistance in two soils of differing salinity. Maydica 45:125133 Google Scholar
Jeschke, M, Doerge, T (2008) Managing volunteer corn in cornfields. Crop Insights. 18:13. http://s3.amazonaws.com/zanran_storage/www.mccormickcompany.net/ContentPages/44064101.pdf. Accessed January 2, 2014Google Scholar
Johnson, WG, Smeda, RJ, Hans, S, Hellwig, K (2002) Integrated Pest Management: Weed Management Systems for Environmentally Sensitive Areas. Extension Publication IPM1018. University of Missouri-Columbia. Pp. 113 Google Scholar
Jolley, VD, Pierre, WH (1977) Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen-rate experiments with corn. Soil Sci Soc Am J 41:373378 Google Scholar
Kucharik, CJ (2006) A multidecadal trend of earlier corn planting in the central USA. Agron J 98:15441550 Google Scholar
Lambert, RJ, Esgar, RW, Joos, DK (2000) Factors affecting the removal of soil nitrogen by corn hybrids. Illinois Fertilizer Conference Proceedings Jan. 24–26. http://frec.ifca.com/2000/report7/. Accessed January 2, 2014Google Scholar
Larson, E (2009) Corn Replant/Late Planting Suggestions. Grain Crops Update. Mississippi State University. Extension Service. http://msucares.com/newsletters/grain/2009/april17_2009.pdf. Accessed January 31, 2012Google Scholar
Lindquist, JL, Evans, SP, Shapiro, CA, Knezevic, SZ (2010) Effect of nitrogen addition and weed interference on soil nitrogen and corn nitrogen nutrition. Weed Technol 24:5058 Google Scholar
Marquardt, PT, Terry, R, Krupke, CH, Johnson, WG (2012) Competitive effects of volunteer corn on hybrid corn growth and yield. Weed Sci 60:537541 Google Scholar
Moolani, MK, Knake, EL, Slife, FW (1964) Competition of smooth pigweed with corn and soybeans. Weed Sci 12:126128 Google Scholar
Scharf, P, Lory, J (2006) Best Management Practices for Nitrogen Fertilizer in Missouri. Extension Publication IPM1027. University of Missouri-Columbia. Pp. 112 Google Scholar
Scharf, PC, Brouder, SM, Hoeft, RG (2006) Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA. Agron J 98:655665 Google Scholar
Shauck, TC, Smeda, RJ (2011) Factors influencing corn harvest losses in Misouri. Online. Crop Management DOI: Google Scholar
Smith, K (2011) Replanting Corn in Arkansas—Destruction of Old Stand is Critical for Weed Control. University of Arkansas. Division of Agriculture Research and Extension. http://www.arkansas-crops.com/2011/04/29/replanting-corn-in-arkansas-destruction-of-old-stand-is-critical-for-weed-control/. Accessed January 31, 2012Google Scholar
Terry, RM, Dobbels, T, Loux, MM, Thomison, PR, Johnson, WG (2012) Corn replant situations: herbicide options and the effect of replanting into partial corn stands. Weed Technol 26:432437 Google Scholar
Thomas, W, Everman, W, Clewis, S, Wilcut, J (2007) Glyphosate-resistant corn interference in glyphosate-resistant cotton. Weed Technol 21:372377 Google Scholar
Thomison, PR (2010) Tips for Evaluating Corn Hybrid Test Plots. Ohio State University Extension Department of Horticulture and Crop Science. http://ohioline.osu.edu/agf-fact/0123.html. Accessed December 30, 2013Google Scholar
Thompson, A, Steckel, L (2007) Replanting Corn in a Failed Roundup Ready Corn Stand. University of Tennessee Extension. W164. https://utextension.tennessee.edu/publications/Documents/W164.pdf. Accessed January 31, 2012Google Scholar
Tollenaar, M, Dibo, AA, Aguilera, S, Weise, SF, Swanton, CJ (1994b) Effect of crop density on weed interference in maize. Agron J 86:591595 Google Scholar
Tollenaar, M, Nissanka, SP, Aguilera, A, Weise, SF, Swanton, CJ (1994a) Effect of weed interference and soil nitrogen on four maize hybrids. Agron J 86:596601 CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture (2009) Corn Acreage, Yield and Production, by County, Missouri, 2008–2009. National Agriculture Statistics Service Missouri Field Office. http://www.nass.usda.gov/Statistics_by_State/Missouri/Publications/County_Estimates/2009/Corn_Production_by_County.asp. Accessed December 30, 2013Google Scholar
[USDA] U.S. Department of Agriculture (2010) Corn Acreage, Yield and Production, by County, Missouri, 2009–2010. National Agriculture Statistics Service Missouri Field Office. http://www.nass.usda.gov/Statistics_by_State/Missouri/Publications/County_Estimates/2010/Corn_Production_by_County.asp. Accessed December 30, 2013Google Scholar
Vetsch, JA, Randall, GW (2004) Corn production as affected by nitrogen application timing and tillage. Agron J 96:502509 Google Scholar
White, DG, Hoeft, RG, Touchton, JT (1978) Effect of nitrogen and nitrapyrin on stalk rot, stalk diameter, and yield of corn. Phytopathology 68:811814 Google Scholar
Zuber, MS, Kang, MS (1978) Corn lodging slowed by sturdier stalks. Crops Soils Mag 30:1315 Google Scholar