Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T12:34:46.088Z Has data issue: false hasContentIssue false

Alternative Herbicides for the Management of Clethodim-Resistant Rigid Ryegrass (Lolium rigidum) in Faba Bean (Vicia faba L.) in Southern Australia

Published online by Cambridge University Press:  20 January 2017

Rupinder Kaur Saini*
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Samuel G. L. Kleemann
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Christopher Preston
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
Gurjeet S. Gill
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, South Australia 5064
*
Corresponding author's E-mail: rupinder.saini@adelaide.edu.au.

Abstract

Two field experiments were conducted during 2012 and 2013 at Roseworthy, South Australia to identify effective herbicide options for the management of clethodim-resistant rigid ryegrass in faba bean. Dose–response experiments confirmed resistance in both field populations (B3, 2012 and E2, 2013) to clethodim and butroxydim. Sequencing of the target site of acetyl coenzyme A carboxylase gene in both populations identified an aspartate-2078-glycine mutation. Although resistance of B3 and E2 populations to clethodim was similar (16.5- and 21.4-fold more resistant than the susceptible control SLR4), the B3 population was much more resistant to butroxydim (7.13-fold) than E2 (2.24-fold). Addition of butroxydim to clethodim reduced rigid ryegrass plant density 60 to 80% and seed production 71 to 88% compared with the standard grower practice of simazine PPI plus clethodim POST. Clethodim + butroxydim combination had the highest grain yield of faba bean (980 to 2,400 kg ha−1). Although propyzamide and pyroxasulfone plus triallate PPI provided the next highest levels of rigid ryegrass control (< 60%), these treatments were more variable and unable to reduce seed production (6,354 to 13,570 seeds m−2) to levels acceptable for continuous cropping systems.

En 2012 y 2013, se realizaron dos experimentos de campo en Roseworthy, en el sur de Australia, para identificar opciones de herbicidas efectivos para el manejo de Lolium rigidum resistente a clethodim en campos de haba. Experimentos de respuesta a dosis confirmaron la presencia de resistencia a clethodim y butroxydim en ambas poblaciones de campo (B3, 2012 y E2, 2013). La secuenciación del sitio activo del gen de acetyl coenzyme A carboxylase identificó la mutación aspartate-2078-glycine en ambas poblaciones. Aunque la resistencia a clethodim de B3 y E2 fue similar (16.5 y 21.4 veces más resistentes que el control susceptible SLR4), la población B3 fue mucho más resistente a butroxydim (7.13 veces) que E2 (2.24 veces). La adición de butroxydim a clethodim redujo la densidad de L. rigidum 60 a 80% y la producción de semilla 71 a 88%, al compararse con la práctica estándar de los productores de aplicar simazine PPI más clethodim POST. La combinación de clethodim + butroxydim tuvo el mayor rendimiento de grano de haba (980 a 2,400 kg ha−1). Aunque propyzamide y pyroxasulfone más triallate PPI brindaron los segundos niveles de control de L. rigidum más altos (< 60%), estos tratamientos fueron más variables e incapaces de reducir la producción de semillas (6,354 a 13,570 semillas m−2) a niveles aceptables para sistemas de cultivo continuo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Australian Bureau of Meteorology: Climate Data Online. http://www.bom.gov.au/climate/data/index.shtml. Accessed July, 2014 Google Scholar
Beckie, HJ, Tardif, HJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528 Google Scholar
Boutsalis, P, Gill, GS, Preston, C (2012) Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technol 26:391398 CrossRefGoogle Scholar
Boutsalis, P, Gill, GS, Preston, C (2014) Control of rigid ryegrass in Australian wheat production with pyroxasulfone. Weed Technol 28:332339 Google Scholar
Burke, IC, Price, AJ, Wilcut, JW, Jordan, DL, Culpepper, S, Tredaway-Ducar, J (2004) Annual grass control in peanut (Arachis hypogaea) with clethodim and imazapic. Weed Technol 18:8892 Google Scholar
Burke, IC, Wilcut, JW (2003) Physiological basis for antagonism of clethodim by CGA 362622. Weed Sci 51:671677 Google Scholar
Cruz-Hipolito, H, Osuna, MD, Domínguez-Valenzuela, JA, Espinoza, N, De Prado, R (2011) Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J Agric Food Chem 59:72617267 Google Scholar
Délye, C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746 Google Scholar
Délye, C, Matéjicek, A, Michel, S (2008) Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pest Manag Sci 64:11791186 CrossRefGoogle ScholarPubMed
Felton, WL, Knights, TJ, Haigh, BM, Harden, S (2004) Tolerance of chickpea to isoxaflutole. Pages 257260 in Proceedings of the14th Australian Weeds Conference. Wagga Wagga, Australia Weed Society of New South Wales Google Scholar
Genstat 5 Committee. 2003. Genstat 5, Release 3, Reference Manual. Oxford, Great Britain: Clarendon Google Scholar
Hashem, A, Collins, RM, Bowran, DG (2011) Efficacy of interrow weed control techniques in wide row narrow-leaf lupin. Weed Technol 25:135140 Google Scholar
Heap, I (2015) The international survey of herbicide-resistant weeds. http://www.weedscience.org/In.asp. Accessed April 2, 2015 Google Scholar
Jones, RE, Vere, DT, Alemseged, Y, Medd, RW (2005) Estimating the economic cost of weeds in Australian annual winter crops. Agric Econ 32:253265 Google Scholar
Kleemann, SGL, Gill, GS (2012) Herbicide application strategies for the control of rigid ryegrass (Lolium rigidum) in wide-row faba bean (Vicia faba) in southern Australia. Weed Technol 26:284288 Google Scholar
Kleemann, SGL, Preston, C, Gill, GS (2014) Influence of seeding system disturbance on preplant incorporated herbicide control of rigid ryegrass (Lolium rigidum) in wheat in southern Australia. Weed Technol 28:323331 CrossRefGoogle Scholar
Lemerle, D, Verbeek, B, Coombes, N (1995) Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Res 35:503509 Google Scholar
Malone, JM, Boutsalis, P, Baker, J, Preston, C (2014) Distribution of herbicide-resistant acetyl-coenzyme A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia. Weed Res 54:7886 CrossRefGoogle Scholar
McDonald, GK (2003) Competitiveness against grass weeds in field pea genotypes. Weed Res 43:4858 Google Scholar
McGowan, AA (1967) Ecological Studies of Wimmera Ryegrass and Associated Annual Grasses in the Clover Ley Rotation in Northeastern Victoria. M. Agr. . Melbourne, Australia: University of Melbourne. 47 pGoogle Scholar
McKenzie, N, Isbell, R, Jacqier, D (2001) Major soils used for agriculture in Australia. Pages 7194 in Peverill, KI, Sparrow, LA, Reuter, DA, eds. Soil Analysis: An Interpretation Manual. CSIRO Publishing Google Scholar
Mwanamwenge, J, Loss, SP, Siddique, KHM, Cocks, PS (1999) Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). Eur J Agron 11:111, Collingwood, VictoriaCrossRefGoogle Scholar
Pannell, DJ, Stewart, V, Bennett, A, Monjardino, M, Schmidt, C, Powles, SB (2004) RIM: a bioeconomic model for integrated weed management of (Lolium rigidum) in Western Australia. Agric Syst 79:305325 Google Scholar
Powles, SB, Lorraine-Colwill, DF, Dellow, JJ, Preston, C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604607 Google Scholar
Rerkasem, K, Stern, WR, Goodchild, NA (1980) Associated growth of wheat and annual ryegrass. 1. Effect of varying total density and proportion in mixtures of wheat and annual ryegrass. Aust J Agric Res 31:549658 Google Scholar
Vidrine, PR, Reynolds, DB, Blouin, DC (1995) Grass control in soybean (Glycine max) with graminicides applied alone and in mixtures. Weed Technol 9:6872 Google Scholar
Wakelin, A, Preston, C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432440 CrossRefGoogle Scholar
Walker, A, Roberts, H (1975) Effects of incorporation and rainfall on the activity of some soil-applied herbicides. Weed Res 15:263269 Google Scholar
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037 Google Scholar
Yu, Q, Collavo, A, Zheng, M-Q, Owen, M, Sattin, M, Powles, SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547558 Google Scholar
Zhang, XQ, Powles, SB (2006) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol 172:636645 CrossRefGoogle Scholar