Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-zn7qb Total loading time: 0.338 Render date: 2021-04-21T00:05:06.178Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Formation and Movement of 14C-Atrazine Degradation Products in a Sandy Loam Soil Under Field Conditions

Published online by Cambridge University Press:  12 June 2017

Brent A. Sorenson
Affiliation:
Dep. Agron. and Plant Gen., Univ. Minnesota, St. Paul, MN
Donald L. Wyse
Affiliation:
Dep. Agron. and Plant Gen., Univ. Minnesota, St. Paul, MN
William C. Koskinen
Affiliation:
Soil and Water Management Res. Unit, and Res. Agron., Plant Sci Res. Unit, U.S. Dep. Agric., Agric. Res. Serv., St. Paul, MN
Douglas D. Buhler
Affiliation:
South. Exp. Stn., Univ. Minnesota, Waseca, MN 56093
William E. Lueschen
Affiliation:
Univ. Minnesota, St. Paul, MN 55108
Michael D. Jorgenson
Affiliation:
Univ. Minnesota, St. Paul, MN 55108

Abstract

Formation and distribution of 14C-atrazine degradation products in the top 120 cm of soil were determined over 16 mo under field conditions in an Estherville sandy loam. After 16 mo, 78% of applied 14C was still present in the soil. By 2 mo after treatment (MAT), 14C had moved to the 30- to 40-cm depth; however, movement to depths greater than 40 cm was not observed. Greater than 98% of the 14C remaining in the soil profile after 16 mo was in the top 20 cm. Twenty-seven percent of the 14C applied was atrazine 16 MAT. Atrazine was the predominant 14C-compound in soil below 10 cm. Hydroxyatrazine (HA) was the major degradation product in the top 10 cm of soil. The proportion of 14C as HA in the top 10 cm increased from 15% 2 MAT to 37% 16 MAT. Deethylatrazine (DEA) was the predominant degradation product at the 10- to 30-cm depth and accounted for up to 23% of the 14C present in the 10- to 20-cm depth. Deisopropylatrazine (DIA) accounted for less than 6% of the radioactivity recovered at any soil depth. The proportion of DEA and DIA increased while the proportion of HA decreased as soil depth increased, indicating that DEA and DIA are more mobile in soil than HA. Detection of HA at depths greater than 10 cm appears to be due to in situ degradation of atrazine previously moved to that soil depth. The large amount of 14C remaining in the soil 16 MAT suggests that a large pool of atrazine and its degradation products are present in the soil for an extended period following application and have the potential to contaminate ground water.

Type
Soil, Air, and Water
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Adams, C. D. and Thurman, E. M. 1991. Formation and transport of deethylatrazine in soil and unsaturated zone. J. Environ. Qual. 20:540547.CrossRefGoogle Scholar
2. Armstrong, D. E., Chesters, G., and Harris, R. F. 1967. Atrazine hydrolysis in soil. Soil Sci. Soc. Am. Proc. 31:6166.CrossRefGoogle Scholar
3. Armstrong, D. E. and Chesters, G. 1968. Adsorption catalyzed chemical hydrolysis of atrazine. Environ. Sci. Technol. 9:683689.Google Scholar
4. Barbee, G. C. and Brown, K. W. 1986. Comparison between suction and free-drainage soil solution samplers. Soil Sci. 141:149154.CrossRefGoogle Scholar
5. Barriuso, E., Koskinen, W., Sorenson, B., Wyse, D., and Buhler, D. 1992. Modification of atrazine desorption during field incubation experiments. Sci. Total Environ. 123/124:333344.CrossRefGoogle Scholar
6. Behki, R. M. and Khan, S. U. 1986. Degradation of atrazine by Pseudomonas: N- dealkylation and dehalogenation of atrazine and its metabolites. J. Agric. Food Chem. 34:746749.CrossRefGoogle Scholar
7. Best, J. A. and Weber, J. B. 1974. Disappearance of s-triazine as affected by soil pH using a balance-sheet approach. Weed Sci. 22:364373.Google Scholar
8. Bowman, B. T. 1990. Mobility and persistence of alachlor, atrazine and metolachlor in plainfield sand, and atrazine and isazofos in honeywood silt loam, using field lysimeters. Environ. Toxic. Chem. 9:453461.CrossRefGoogle Scholar
9. Brouwer, W.W.M., Boesten, J.J.T.I., and Siegers, W. G. 1990. Adsorption of transformation products of atrazine by soil. Weed Res. 30:123128.CrossRefGoogle Scholar
10. Capriel, P. and Haisch, A. 1983. Persistence of atrazine and its metabolites in soil after a single herbicide application. Z. Pflanzenernaehr. Bodenk. D. 146:474480.CrossRefGoogle Scholar
11. Clay, S. A. and Koskinen, W. C. 1990. Adsorption and desorption of atrazine, hydroxyatrazine, and s-glutathione atrazine in two soils. Weed Sci. 38:262266.Google Scholar
12. Cook, A. M. and Hutter, R. 1981. s-triazines as nitrogen sources for bacteria. J. Agric. Food Chem. 29:11351143.CrossRefGoogle Scholar
13. Dao, T. H., Lavy, T. L., and Sorensen, R. C. 1979. Atrazine degradation and residue distribution in soil. Soil Sci. Soc. Am. J. 43:11291134.CrossRefGoogle Scholar
14. Giardina, M. C., Giardi, M. T., and Filacchioni, G. 1980. 4-Amino-2-chloro-1,3,5-triazine: A new metabolite of atrazine by soil bacterium. Agric. Biol. Chem. 44:20672072.CrossRefGoogle Scholar
15. Giardina, M. C., Giardi, M. T., and Filacchioni, G. 1982. Atrazine metabolism by Nocardia: Elucidation of initial pathway and synthesis of potential metabolites. Agric. Biol. Chem. 46:14391445.CrossRefGoogle Scholar
16. Giardi, M. T., Giardina, M. C., and Filacchioni, G. 1985. Chemical and biological degradation of primary metabolites of atrazine by a Nocardia strain. Agric. Biol. Chem. 49:15511558.CrossRefGoogle Scholar
17. Goswami, K. P. and Green, R. E. 1973. Simultaneous extraction of hydroxyatrazine, atrazine, and ametryne from some Hawaiian soils. Soil Sci. Soc. Am. Proc. 37:702707.CrossRefGoogle Scholar
18. Hall, J. K., Murray, M. R., and Hartwig, N. L. 1989. Herbicide leaching and distribution in tilled and untilled soil. J. Environ. Qual. 18:439445.CrossRefGoogle Scholar
19. Helling, C. S., Zhuang, W., Gish, T. J., Coffman, C. B., Isensee, A. R., Kearney, P. C., Hoagland, D. R., and Woodward, M. D. 1988. Persistence and leaching of atrazine, alachlor, and cyanazine under no-tillage practices. Chemosphere 17:175187.CrossRefGoogle Scholar
20. Isensee, A. R., Helling, C. S., Gish, T. J., Kearney, P. C., Coffman, C. B., and Zhuang, W. 1988. Groundwater residues of atrazine, alachlor, and cyanazine under no-tillage practices. Chemosphere 17:165174.CrossRefGoogle Scholar
21. Isensee, A. R., Nash, R. G., and Helling, C. S. 1990. Effect of conventional vs. no-tillage on pesticide leaching to shallow groundwater. J. Environ. Qual. 19:434440.CrossRefGoogle Scholar
22. Kaufman, D. D., and Blake, J. 1970. Degradation of atrazine by soil fungi. Soil Biol. Biochem. 2:7380.CrossRefGoogle Scholar
23. Khan, S. U. and Marriage, P. B. 1977. Residues of atrazine and its metabolites in an orchard soil and their uptake by oat plants. J. Agric. Food Chem. 25:14081413.CrossRefGoogle Scholar
24. Muir, D. C. and Baker, B. E. 1976. Detection of triazine herbicides and their degradation products in tile-drain water from fields under intensive corn (Maize) production. J. Agric. Food Chem. 24:122125.CrossRefGoogle ScholarPubMed
25. Muir, D.C.G. and Baker, B. E. 1978. The disappearance and movement of three triazine herbicides and several of their degradation products under field conditions. Weed Res. 18:111120.CrossRefGoogle Scholar
26. Perry, C. P. 1990. Source, extent, and degradation of herbicides in a shallow aquifer near Hesston, Kansas. U.S. Geol. Surv. Water Resources Investigations Rep. 904019.Google Scholar
27. Pionke, H. B. and Glotfelty, D. W. 1990. Contamination of groundwater by atrazine and selected metabolites. Chemosphere 21:813822.CrossRefGoogle Scholar
28. Ritter, W. F. 1990. Pesticide contamination of ground water in the United States—A Review. J. Environ. Sci. Health Part B. 25:129.CrossRefGoogle ScholarPubMed
29. Schiavon, M. 1988. Studies of the leaching of atrazine, of its chlorinated derivatives, and of hydroxyatrazine from soil using C ring-labeled compounds under outdoor conditions. Ecotoxicol. Environ. Saf. 15:4654.CrossRefGoogle Scholar
30. Schiavon, M. 1988. Studies of the movement and the formation of bound residues of atrazine, of its chlorinated derivatives, and of hydroxyatrazine in soil using 14C ring-labeled compounds under outdoor conditions. Ecotoxicol. Environ. Saf. 15:5561.CrossRefGoogle ScholarPubMed
31. Shimabukuro, R. H. and Swanson, H. R. 1969. Atrazine metabolism, selectivity, and mode of action. J. Agric. Food Chem. 17:199205.CrossRefGoogle Scholar
32. Skipper, H. D., Gilmour, C. M., and Furtick, W. R. 1967. Microbial versus chemical degradation of atrazine in soils. Soil Sci. Soc. Am. Proc. 31:653656.CrossRefGoogle Scholar
33. Starr, J. L. and Glotfelty, D. E. 1990. Atrazine and bromide movement through a silt loam soil. J. Environ. Qual. 19:552558.CrossRefGoogle Scholar
34. Wolf, D. C. and Martin, J. P. 1975. Microbial decomposition of ring 14C atrazine, cyanuric acid and 2-chloro-4,6-diamino-s-triazine. J. Environ. Qual. 4:134139.CrossRefGoogle Scholar
35. Wright, J. and Bergsrud, F. 1986. Irrigation scheduling; Checkbook method. Univ. Minnesota Ext. Bull. AG-FO-1322.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between 12th June 2017 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation and Movement of 14C-Atrazine Degradation Products in a Sandy Loam Soil Under Field Conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation and Movement of 14C-Atrazine Degradation Products in a Sandy Loam Soil Under Field Conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation and Movement of 14C-Atrazine Degradation Products in a Sandy Loam Soil Under Field Conditions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *