Skip to main content Accessibility help

Sputtered-deposited thin brass films in a modified glow discharge Grimm-type source

  • K. I. Grais (a1), M. A. Eid (a1), N. L. Tawfik (a1), M. S. Abd-El-Aal (a1) and A. A. Shaltout (a1)...


Modification of the non-assisted gas flow-line across the target surface in a Grimm-type glow discharge source is described. The new flow–line permits the gas to flow through a cylindrical annular space ending with a disc-space annular gap, facing the target surface. This configuration would cause directed jet assisted gas flow rays to impinge on infinite points across the cathode surface. Improvement has been achieved in the V-I characteristics where $\Delta V$ / $\Delta I$ increases from 1.8 to 3.5 V/mA. The sputtering as well as simultaneous deposition rates, have been increased by a factor of 16 and 17 respectively. These roll over with increasing sputtering time, their maximum values at a characteristic time, t oc of 21 min. The t oc value was constant for different operating parameters provided that the source geometry assembly is kept fixed. The presence of a glass substrate in the anode cavity has, apparently, no effect on the obtained data. Improvements have also been achieved in the crater profile, characterized by an approximately flat crater bottom with nearly vertical walls, and less re-deposited particles on the crater depth and edge. Fixing the distance Z of the substrate from target surface, along the cell axis, and varying the deposition time from 1 to 30 min, a sequence of changes in the deposited film were observed by X-ray diffraction and energy dispersion X-ray (EDX). These changes start with an amorphous structure, followed by the appearance of Cu and Zn crystallites and a probable deposition of Cu5Zn8 clusters. The profile of the number of sputtered particles at different Z values is characterized by a number of peaks and troughs. This behavior has been explained by the occurrence of local cluster-dissociation and formation, by different collision processes. The improvements achieved by the application of the present jet assisted gas flow can be of value in the analytical application of this type of glow discharge.


Corresponding author


Hide All
[1] Bertran, E., Sharman, S.N., Viera, G., Costa, J., St'ahel, P., Cabarrocas, P., J. Mater. Res. 13, 2477 (1998)
[2] K. Tanaka, A. Matsudu, Mater. Sci. Res. 2, 139 (1987)
[3] Robertson, J., Surf. Coat. Tech. 50, 185 (1992)
[4] R. Payling, D.G. Jones, A. Bengtson (Eds.), Glow Discharge Optical Emission Spectroscopy (John Wiley, Chichester, 1997), pp. 62, 260, 287
[5] G. Francis, The Glow Discharge at Low Pressure (Handbuch der physik, 1956), Vol. 21, p. 232
[6] R.K. Marcus, J.A.C. Broekaert, Glow Discharge Plasma in Analytical Spectroscopy (John Wiley and Sons, New York, 2003)
[7] B.N. Chapman, Glow Discharge Processes (John Wiley, New York, 1980)
[8] E.W. McDaniel, Collision Phenomena in ionized Gases (John Wiley and Sons, New York, 1964)
[9] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquid (John Wiley, New York, 1964)
[10] J.D. Cubine, Gaseous Conductors, Theory and Engineering Applications (Dover Publications, Inc., New York, 1958), Chap. 1, Sect. 1.5, p. 8
[11] S. Dushmann, Scientific Foundations of Vacuum Technique (Wiley, New York, 2nd edn.), pp. 60–66
[12] L.I. Maissel, R. Glang (Eds.), Handbook of Thin Film Technology (McGraw-Hill Book Comp., New York, 1970), Chaps. 3, 8, 11
[13] Song, K., Jung, E., Cha, H., Lee, J., Kim, M.J., Lee, S.C., J. Anal. Atom. Spectrom. 13, 301 (1998)
[14] Walden, W.O., Harrison, W.W., Smith, B.W., Winefordner, J.D., J. Anal. Atom. Spectrom. 9, 1039 (1994)
[15] Stirling, A.J., Westwood, W.D., J. Appl. Phys. 41, 742 (1970); J. Phys. D Appl. Phys. 4, 246 (1971)
[16] A. Bogaerts, R.D. Guenard, B.W. Smith, J.D. Winefordner, W.W. Harvisem, R. Gijbels, Spectrochim. Acta B 52, 205, 219, 765 (1997)
[17] Ko, J.B., Spectrochim. Acta B 39, 1405 (1984)
[18] Ruste, J., Schwoehrer, F., Fresen. J. Anal. Chem. 355, 861 (1996)
[19] Bogaerts, A., Gijbels, R., Fresen. J. Anal. Chem. 355, 853 (1996)
[20] Broekaert, J.A.C., Fresen. J. Anal. Chem. 355, 847 (1996)
[21] Beyer, C., Feldmann, I., Gulmowr, D., Hoffmann, V., Jakubowski, N., Spectrochim. Acta B 57, 521 (2002)
[22] Pons-Corbeau, J., Cazet, J.P., Moreau, J.P., Berneron, B., Charbonnier, J.C., Surf. Interface Anal. 9, 21 (1986)
[23] R. Payling, G. Jones, Surf. Interface Anal. 20, 787 (1993)
[24] Bogaerts, A., Gijbels, P., J. Anal. Atom. Spectrom. 12, 75 (1997)
[25] Lazik, C., Marcus, R.K., Spectrochim. Acta B 48, 863 (1993)
[26] Gough, D.S., Anal. Chem. 48, 1926 (1976)
[27] Kim, J., Piepmeier, E.H., Anal. Chem. 60, 2040 (1988)
[28] Grais, K.I., Bastawros, A.M., AI-Ashkar, E.A., Eid, K.A., Eur. Phys. J. Appl. Phys. 15, 213 (2001)
[29] Grais, K.I., Eid, M.A., Al-Ashkar, E.A., Eid, K.A., Abd-El-Aal, M.S., Eur. Phys. J. Appl. Phys. 21, 213 (2003)
[30] Grimm, W., Spectrochim. Acta B 23, 443 (1968)
[31] Garrison, B.J., Winograd, N., Harrison, D.E., J. Vac. Sci. Technol. 16, 789 (1979)
[32] S.P. Wolsky, D. Shooter, E.J. Zdanuk, Trans. 9th Natl. Vacuum Symp., 1962, p. 164 (see Ref. [12], Chap. 4, Sect. 9, p. 4.39)
[33] Sigmund, S., Phys. Rev. 184, 383 (1969)
[34] D.R. Lide, Handbook of Chemistry and Physics, Strengths of Chemical Bonds, edited by J.A. Kerr, D.W. Stocker, 8th edn. 1999/2000, Sect. 9.51
[35] Banks, P.R., Blades, M.W., Spectrochim. Acta B 47, 203 (1992)
[36] van Straaten, M., Vertes, A., Gijbels, R., Anal. Chem. 64, 1855 (1992)
[37] J.A.C. Broekaert, T. Bricher, K.R. Brushwyler, G.M. Hieftje, Spectrochim. Acta B 47, 131 (1992)
[38] Ferreira, N.P., Human, H.G.C., Spectrochim. Acta B 36, 215 (1981)
[39] Bogaerts, A., Okhirmovesky, A., Gijbels, R., J. Anal. Atom. Spectrom. 17, 1076 (2002)
[40] Bogaerts, A., Gijbels, R., Carman, G.J., Spectrochim. Acta B 53, 1679 (1998)


Sputtered-deposited thin brass films in a modified glow discharge Grimm-type source

  • K. I. Grais (a1), M. A. Eid (a1), N. L. Tawfik (a1), M. S. Abd-El-Aal (a1) and A. A. Shaltout (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed