Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T08:22:52.368Z Has data issue: false hasContentIssue false

Preparation and characterization of obliquely deposited copper oxide thin films

Published online by Cambridge University Press:  31 August 2007

F. Chaffar Akkari
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère 1002, Tunis, Tunisia
M. Kanzari*
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère 1002, Tunis, Tunisia
B. Rezig
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère 1002, Tunis, Tunisia
Get access

Abstract

When a thin film is deposited by physical vapour deposition, with the vapour flux arriving at an oblique angle from the substrate normal, and under conditions of sufficiently limited adatom mobility to create a columnar microstructure, the resulting structure is somewhat porous and grows at an angle inclined toward the vapour source. This technique called glancing angle deposition was used in this work to grow nanocrystalline cuprous oxide thin films by annealing in air of copper films deposited firstly by this method onto glass substrates. The films were characterized for their structural, surface morphological, compositional; electrical and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity and optical (transmittance and reflectance) measurement techniques. It was found that the above properties were strongly dependent on the obliquely angle deposition. The nanocrystallite size in these films was varied by varying the obliquely angle deposition. Optical studies show a direct allowed transition around in the range 1.5–1.85 eV for the annealed films. An enhancement in the oxidation process was observed for high obliquely angles deposition.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.E. Rakshani Solid State Electron. 29, 7 (1986)
Marabelli, F., Parraviciny, G.B., Drioli, F.S., Phys. Rev. B 52, 1433 (1995) CrossRef
Ghijsen, J., Tjeng, L.H., Elp, J.V., Eskes, H., Westerink, J., Sawatzky, G.A., Czyzyk, M.T., Phys. Rev. B 38, 11322 (1988) CrossRef
Koffyberg, F.P., Benko, F.A., J. Appl. Phys. 53, 1173 (1982) CrossRef
bar-Yam, Y., Phys. Rev. B 43, 2601 (1991) CrossRef
Good, J.B. enough, J.S. Zhou, J. Chan, Phys. Rev. B 47, 5275 (1993)
Sharma, A.C., Physica B 241–243, 745 (1997)
Rai, B.P., Solar Cells 25, 265 (1988) CrossRef
Zhou, Y.C., Switzer, J.A., Mater. Res. Innovat. 2, 22 (1998) CrossRef
Ottosson, M., Carlsson, J.O., Surf. Coat. Technol. 78, 263 (1996) CrossRef
Maruyama, T., Jpn J. Appl. Phys. 37, 4099 (1998) CrossRef
Gong, Y.S., Lee, C., Yang, C.K., J. Appl. Phys. 77, 5422 (1995) CrossRef
Kita, R., Kawaguchi, K., Hase, T., Koga, T., Itti, R., Morishita, T., J. Mater. Res. 9, 1280 (1994) CrossRef
Drobny, V.F., Pulfrey, D.L., Thin Solid Films 61, 89 (1979) CrossRef
Robbie, K., Sit, J.C., Brett, M.J., J. Vac. Sci. Technol. B 16, 1115 (1998) CrossRef
Itoh, T., Maki, K., Vacuum 81, 904 (2007) CrossRef
H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials (New York, Wiley, 1974)
T.S. Moss, Optical Properties of Semiconductors, (Butterworth, London, 1959)
Davis, E.A., Mott, N.F., Philipp. Mag. 22, 903 (1970) CrossRef
T.J. Richardson, J.L. Slack, M.D. Rubin, Electrochromism of copper oxide thin films, presented at the 4th International meeting on Electrochromism, August 21–23, 2000, Uppsala, Sweden
Guillen, C., Herrero, J., Sol. Energy Mater. 23, 31 (1991) CrossRef
Abu-Zeid, M.E., Rakhshani, A.E., Al-Jassar, A.A., Youssef, X.A., Phys. Stat. Sol. A 93, 613 (1986) CrossRef
J. Tauc, Amorphous and liquid semiconductors (New York, Plenum, 1974) Ch. 4
M.S. Cohen. J. Appl. Phys. 32, 875 (1961)