Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T14:03:42.029Z Has data issue: false hasContentIssue false

Large third-order optical nonlinearity in Cu-doped SrBi2Nb2O9 thin films

Published online by Cambridge University Press:  08 August 2007

K. S. Chen*
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
H. S. Gu
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
W. Q. Cao
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
J. S. Zou
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
L. Wang
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
Y. Huang
Affiliation:
Faculty of Physics and Electronic Technology, Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province, Hubei University, Wuhan 430062, P.R. China
Get access

Abstract

Copper-doped SrBi2Nb2O9 (SBN) thin films have been fabricated on fused quartz substrates at room temperature by RF magnetron sputtering technique. The chemical composition and Cu concentration in the deposited films were characterized by X-ray fluorescence spectrometer. XRD analysis indicated that the films have a single phase of layered perovskite structure and Cu doping in SBN films did not degrade their crystallinity at the dopant concentration of 9.5%. The nonlinear optical properties of the samples were determined using a single beam z-scan technique at a laser wavelength of 532 nm with laser duration of 25 ps. The results showed that the value of $\chi ^{(3)}$ of Cu-doped SBN films is about twice larger than that of the undoped, which is comparable with that of some representative nonlinear optical materials, indicating that metal-doping in dielectric is effective to enhance their nonlinear optical properties. This suggests that Cu-doped SBN films have great potential in designing nonlinear optical devices.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.I. Sakai, Phase Conjugate Optics (McGraw-Hill, Singapore, 1992)
J. Zyss, Molecular Nonlinear Optics (Academic, New York, 1994)
Xuan, L., Pan, S., Chen, Z., Wang, R., Shi, W., Li, C., Appl. Phys. Lett. 73, 2896 (1998) CrossRef
Zhang, W.F., Zhang, M.S., Yin, Z., Gu, Y.Z., Du, Z.L., Yu, B.L., Appl. Phys. Lett. 75, 902 (1999) CrossRef
Shi, P., Yao, X., Zhang, L.Y., Wu, X.Q., Wang, M.Q., Wan, X., Solid State Commun. 134, 589 (2005) CrossRef
Shi, F.W., Meng, X.J., Wang, G.S., Sun, J.L., Lin, T., Ma, J.H., Li, Y.W., Chu, J.H., Thin Solid Films 496, 333 (2006) CrossRef
Wu, Y., Cao, G.Z., Appl. Phys. Lett. 75, 2650 (1999) CrossRef
Gu, H.S., Xue, J.M., John Wang, Appl. Phys. Lett. 79, 2061 (2001) CrossRef
Moon, S.Y., Choi, K.S., Jung, K.W., Lee, H., Jung, D., Bull. Korean Chem. Soc. 23, 1463 (2002)
Shi, W.S., Chen, Z.H., Liu, N.N., Lu, H.B., Zhou, Y.L., Cui, D.F., Appl. Phys. Lett. 75, 1547 (1999) CrossRef
Yang, G., Wang, W.T., Yang, G.Z., Chen, Z.H., Chin. Phys. Lett. 20, 924 (2003)
Wang, Y.H., Gu, B., Xu, G.D., Zhu, Y.Y., Appl. Phys. Lett. 84, 1686 (2004) CrossRef
Miyazaki, T., Fujimaki, T., Adachi, S., Ohtsuka, K., J. Appl. Phys. 89, 8316 (2001) CrossRef
Fiorini, C., Gianoncelli, A., Longoni, A., Domelli, D., Andrea, C., Valentini, G., Rev. Sci. Instrum. 74, 1048 (2003) CrossRef
sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W., IEEE J. Quantum Electron 26, 760 (1990) CrossRef
Wang, W.T., Yang, G., Duan, P., Zhou, Y.L., Chen, Z.H., Chin. Phys. Lett. 19, 1122 (2002)
Chapple, P.B., Staromlynska, J., Hermann, J.A., Mckay, T.J., J. Nonlin. Opt. Phys. Mater. 6, 251 (1991) CrossRef
Lee, M.Y., Kim, T.S., Choi, Y.S., J. Non-Cryst. Solids 211, 143 (1997) CrossRef
Ballesteros, J.M., Serna, R., Solis, J., Afonso, C.N., Petford-Long, A.K., Osborne, D.H., Haglund, R.F., Appl. Phys. Lett. 71, 2445 (1997) CrossRef
Yang, G., Wang, W.T., Yan, L., Lu, H.B., Yang, G.Z., Chen, Z.H., Opt. Commun. 209, 445 (2002) CrossRef
Kim, J.S., Lee, K.S., Kim, S.S., Thin Solid Films 515, 2332 (2006) CrossRef
Liao, H.B., Xiao, R.F., Fu, J.S., Yu, P., Wong, G.K.L., Sheng, P., Appl. Phys. Lett. 70, 1 (1997) CrossRef
Liao, H.B., Xiao, R.F., Wang, H., Wong, K.S., Wong, G.K.L., Appl. Phys. Lett. 72, 1817 (1998) CrossRef