Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T21:43:51.605Z Has data issue: false hasContentIssue false

Analysis of in vitro reaction layers formed on 48S4 glass for applications in biomaterial field

Published online by Cambridge University Press:  21 September 2007

M. Mami
Affiliation:
Équipe Chimie du Solide et Matériaux, UMR 6226 Sciences Chimiques de Rennes Campus de Beaulieu, Bât. 10 B, avenue du général Leclerc, 35042 Rennes Cedex, France Laboratoire de Physico-chimie des matériaux, Département de physique, Faculté des Sciences de Monastir, avenue de l'environnement, 5019 Monastir, Tunisia
H. Oudadesse*
Affiliation:
Équipe Chimie du Solide et Matériaux, UMR 6226 Sciences Chimiques de Rennes Campus de Beaulieu, Bât. 10 B, avenue du général Leclerc, 35042 Rennes Cedex, France
R. Dorbez-Sridi
Affiliation:
Laboratoire de Physico-chimie des matériaux, Département de physique, Faculté des Sciences de Monastir, avenue de l'environnement, 5019 Monastir, Tunisia
E. Dietrich
Affiliation:
Équipe Chimie du Solide et Matériaux, UMR 6226 Sciences Chimiques de Rennes Campus de Beaulieu, Bât. 10 B, avenue du général Leclerc, 35042 Rennes Cedex, France
J. Rocherullé
Affiliation:
Équipe Chimie du Solide et Matériaux, UMR 6226 Sciences Chimiques de Rennes Campus de Beaulieu, Bât. 10 B, avenue du général Leclerc, 35042 Rennes Cedex, France
Get access

Abstract

The purpose of this work is to study the formation of hydroxyapatite (Ca10 (PO4)6(OH)2) on the surface of glass 48S4 with chemical composition: SiO2: 48%, CaO: 30%, Na2O: 18% and P2O5: 4% in weight ratio. This selected composition presents phosphorus contributions lower than that in Bioglass® [Hench et al. J. Biomed. Mater. 36, 117 (1971)] developed by L. Hench. Comparison of the kinetic formation of hydroxyapatite on the glass surfaces of these two biomaterials was made. The Material was prepared by melting and rapid quenching. It shows a bioactive character. This phenomenon is confirmed by the “in vitro” formation of hydroxycarbonate apatite (HCA) layer on the surface of glass after immersion in the Simulated Body Fluid (SBF). Before immersion in SBF, The proposed composition of glass was analyzed using several physicochemical methods like XRD, FTIR, SEM, and EDS confirming the composition and its amorphous state well. The pellets were soaked in SBF for 2 h, 1, 3, 7 and 15 days at 37 °C. The analyses of SBF after each immersion time were carried out using ICP-OES method. Results show important exchanges of ions between the surface of glass and the SBF. They revealed the formation of an amorphous CaO-P2O5- rich layer on the surface of the specimens after 1 day in the solution and a crystalline HCA layer after 3 days immersion time as will be shown by XRD, EDS and FTIR analysis. The cristallinity increases with immersion time. After 15 days immersion in SBF liquid, the specimens are still fully covered by hydroxycarbonate apatite (HCA) layer.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K., J. Biomed. Mater. 36, 117 (1971) CrossRef
Oonishi, H., Kushitanis, S., Yasukawa, E., Iwaki, H., Hench, L.L., Wilson, J., Tsuji, E., Sugihara, T., Clin. Orthop. Rel. Res. 334, 316 (1997) CrossRef
O.K. Nakamura, T. Yamamura, T. Kokubo, T. Ebisawa, Y. Kotoura, Y. Oka, J. Biomed. Mater. Res. 25, 357 (1991)
Derrien, A.C., Oudadesse, H., Lucas-Girot, A., Martin, S., Cathelineau, G., Sauvage, T., Blondiaux, G., Nucl. Instrum. Meth. 226, 281 (2004) CrossRef
Oudadesse, H., Martin, S., Derrien, A.C., Lucas-Girot, A., Cathelineau, G., Blondiaux, G., J. Radioanal. Nucl. Chem. 262, 479 (2004) CrossRef
Heughebaert, M., LeGeros, R.Z., Gineste, M., G. Bonel. J. Biomed. Mater. Res. 23, 257 (1988) CrossRef
Hench, L.L., Wilson, J., Science 226, 630 (1984) CrossRef
Chassot, E., Oudadesse, H., Irigaray, J.L., Curis, E., Benazeth, S., J. Appl. Phys. 90, 6440 (2001) CrossRef
H. Oudadesse, A.C. Derrien, M. Lefloch, J. Davidovits, J. Mat. Sci. (2007), online: DOI 10.1007/s10853-OO66-O5246-7
Oudadesse, H., Derrien, A.C., Lucas-Girot, A., J. Appl. Phys. 31, 217 (2005)
J. Davidovits, M. Davidovits, Patent n° EP 0815064 B11 (1996)
L.L. Hench, P. Ducheyne, J. Lemons, Ann. NY Acad. Sci. 54 (1988)
Hench, L.L., Biomaterials 19, 1419 (1998) CrossRefPubMed
Le Geros, R.Z., Prog. Crystal Growth Charact. 4, 1 (1981) CrossRef
Heughebaert, M., LeGeros, R.Z., Gineste, M., Bonel, G.J., J. Biomed. Mater. Res. 23, 257 (1988) CrossRef
Kokubo, T., Ito, S., Huang, Z.T., Hayashi, T., Sakka, S., Kitsugi, T., Yamamuro, T., J. Biomed. Mater. Res. 24, 331 (1990) CrossRef
Nakamura, O.K., Yamamura, T., Ebisawa, Y., Kokubo, T., Kotoura, Y., J. Mater. Sci. Med. 3, 95 (1992)
K. Hyakuna, T. Yamamura, Y. Kotoura, M. Oka, T. Kokubo, edited by T. Yamamura, L.L. Hench, J. Wilson, Handbook of Bioactive ceramics (CRC, Boca Raton, FL, 1990), Vol. 1, p. 125
Filqueiras, M.R., La Torr, G., Hench, L.L., J. Biomed. Mater. Res. 25, 445 (1993) CrossRef
Holand, W, Vogel, W., Naumann, K., Gummel, J., J. Biomed. Mater. Res. 19, 303 (1985) CrossRef
Zoulgami, M., Lucas Girot, A., Michaud, V., Briard, P., Gaudé, J., Oudadesse, H., Eur. J. Appl. Phys. 19, 173 (2002) CrossRef
Hench, L.L., West, J.K., Chem. Rep. 13, 187 (1996)
D.C. Greenspan, J.P. Zhong, G.P. La Torre, edited by O.H. Andersson, A. Yli-Urpo, Bioceramics (Oxford: Butterworth-Heinemann, 1994), Vol. 7, p. 28
D.C. Greenspan, J.P. Zhong, Z.F. Chen, G.P. La Torre, Bioceramics (Oxford: Elsevier, 1997), Vol. 10, p. 391
D.C. Greenspan, J.P. Zhong, D.L. Wheeler, L.Z. LeGeros, J.P. LeGeros, Bioceramics (Oxford: Elsevier, 1998), Vol. 11, p. 345
L.L. Hench, Bioceramics, Proceedings of the 7th International Symposium on ceramics in medicine, Turku (1994), Vol. 7, p. 3
Hench, L.L., J. Am. Ceram. Soc. 74, 1487 (1991) CrossRef
Blenk, B.A., Bromer, H., Deutscher, K., Med. Orthop. Tech. 95, 144 (1975)
K. de Groot, Bioceramics of calcium phosphate (CRC Press, Boca Raton, FL, 1983), Vol. 1
T. Kokubo, H. Hushitani, S. Sakka, J. Biomed. Mater. Res. 721 (1990)
International Centre for Diffraction Data (JCPDS, 2002), 2.3
G. La Torre, L.L. Hench, Handbook: Characterization Techniques for the Solid-Solution Interface, edited by J.H. Adair, J.A. Casey, American Ceramic Society, Wester-ville, OH, 35 (1993)
Kontonasaki, E., Zorba, T., Papadopoulou, L., Pavlidou, E., Chatzistavrou, X., Paraskevopolos, K., Koidis, P., Hydroxy. Cryst. Res. Technol. 37, 1165 (2002) 3.0.CO;2-R>CrossRef
B. Smith, A systematic Approach (CRC Pres, Florida, 1999)
Farmer, V.C., Mineral. Soc. 4, 539 (1974)
Rehman, I., Bonfield, W., J. Mater. Sci. Mater. Med. 8, 1 (1997) CrossRef
Rehman, I., Knowles, J.C., Bonfield, W., J. Biomed. Res. 41, 162 (1998) 3.0.CO;2-P>CrossRef