Skip to main content Accessibility help

Analysis of in vitro reaction layers formed on 48S4 glass for applications in biomaterial field

  • M. Mami (a1) (a2), H. Oudadesse (a1), R. Dorbez-Sridi (a2), E. Dietrich (a1) and J. Rocherullé (a1)...


The purpose of this work is to study the formation of hydroxyapatite (Ca10 (PO4)6(OH)2) on the surface of glass 48S4 with chemical composition: SiO2: 48%, CaO: 30%, Na2O: 18% and P2O5: 4% in weight ratio. This selected composition presents phosphorus contributions lower than that in Bioglass® [Hench et al. J. Biomed. Mater. 36, 117 (1971)] developed by L. Hench. Comparison of the kinetic formation of hydroxyapatite on the glass surfaces of these two biomaterials was made. The Material was prepared by melting and rapid quenching. It shows a bioactive character. This phenomenon is confirmed by the “in vitro” formation of hydroxycarbonate apatite (HCA) layer on the surface of glass after immersion in the Simulated Body Fluid (SBF). Before immersion in SBF, The proposed composition of glass was analyzed using several physicochemical methods like XRD, FTIR, SEM, and EDS confirming the composition and its amorphous state well. The pellets were soaked in SBF for 2 h, 1, 3, 7 and 15 days at 37 °C. The analyses of SBF after each immersion time were carried out using ICP-OES method. Results show important exchanges of ions between the surface of glass and the SBF. They revealed the formation of an amorphous CaO-P2O5- rich layer on the surface of the specimens after 1 day in the solution and a crystalline HCA layer after 3 days immersion time as will be shown by XRD, EDS and FTIR analysis. The cristallinity increases with immersion time. After 15 days immersion in SBF liquid, the specimens are still fully covered by hydroxycarbonate apatite (HCA) layer.


Corresponding author


Hide All
[1] Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K., J. Biomed. Mater. 36, 117 (1971)
[2] Oonishi, H., Kushitanis, S., Yasukawa, E., Iwaki, H., Hench, L.L., Wilson, J., Tsuji, E., Sugihara, T., Clin. Orthop. Rel. Res. 334, 316 (1997)
[3] O.K. Nakamura, T. Yamamura, T. Kokubo, T. Ebisawa, Y. Kotoura, Y. Oka, J. Biomed. Mater. Res. 25, 357 (1991)
[4] Derrien, A.C., Oudadesse, H., Lucas-Girot, A., Martin, S., Cathelineau, G., Sauvage, T., Blondiaux, G., Nucl. Instrum. Meth. 226, 281 (2004)
[5] Oudadesse, H., Martin, S., Derrien, A.C., Lucas-Girot, A., Cathelineau, G., Blondiaux, G., J. Radioanal. Nucl. Chem. 262, 479 (2004)
[6] Heughebaert, M., LeGeros, R.Z., Gineste, M., G. Bonel. J. Biomed. Mater. Res. 23, 257 (1988)
[7] Hench, L.L., Wilson, J., Science 226, 630 (1984)
[8] Chassot, E., Oudadesse, H., Irigaray, J.L., Curis, E., Benazeth, S., J. Appl. Phys. 90, 6440 (2001)
[9] H. Oudadesse, A.C. Derrien, M. Lefloch, J. Davidovits, J. Mat. Sci. (2007), online: DOI 10.1007/s10853-OO66-O5246-7
[10] Oudadesse, H., Derrien, A.C., Lucas-Girot, A., J. Appl. Phys. 31, 217 (2005)
[11] J. Davidovits, M. Davidovits, Patent n° EP 0815064 B11 (1996)
[12] L.L. Hench, P. Ducheyne, J. Lemons, Ann. NY Acad. Sci. 54 (1988)
[13] Hench, L.L., Biomaterials 19, 1419 (1998)
[14] Le Geros, R.Z., Prog. Crystal Growth Charact. 4, 1 (1981)
[15] Heughebaert, M., LeGeros, R.Z., Gineste, M., Bonel, G.J., J. Biomed. Mater. Res. 23, 257 (1988)
[16] Kokubo, T., Ito, S., Huang, Z.T., Hayashi, T., Sakka, S., Kitsugi, T., Yamamuro, T., J. Biomed. Mater. Res. 24, 331 (1990)
[17] Nakamura, O.K., Yamamura, T., Ebisawa, Y., Kokubo, T., Kotoura, Y., J. Mater. Sci. Med. 3, 95 (1992)
[18] K. Hyakuna, T. Yamamura, Y. Kotoura, M. Oka, T. Kokubo, edited by T. Yamamura, L.L. Hench, J. Wilson, Handbook of Bioactive ceramics (CRC, Boca Raton, FL, 1990), Vol. 1, p. 125
[19] Filqueiras, M.R., La Torr, G., Hench, L.L., J. Biomed. Mater. Res. 25, 445 (1993)
[20] Holand, W, Vogel, W., Naumann, K., Gummel, J., J. Biomed. Mater. Res. 19, 303 (1985)
[21] Zoulgami, M., Lucas Girot, A., Michaud, V., Briard, P., Gaudé, J., Oudadesse, H., Eur. J. Appl. Phys. 19, 173 (2002)
[22] Hench, L.L., West, J.K., Chem. Rep. 13, 187 (1996)
[23] D.C. Greenspan, J.P. Zhong, G.P. La Torre, edited by O.H. Andersson, A. Yli-Urpo, Bioceramics (Oxford: Butterworth-Heinemann, 1994), Vol. 7, p. 28
[24] D.C. Greenspan, J.P. Zhong, Z.F. Chen, G.P. La Torre, Bioceramics (Oxford: Elsevier, 1997), Vol. 10, p. 391
[25] D.C. Greenspan, J.P. Zhong, D.L. Wheeler, L.Z. LeGeros, J.P. LeGeros, Bioceramics (Oxford: Elsevier, 1998), Vol. 11, p. 345
[26] L.L. Hench, Bioceramics, Proceedings of the 7th International Symposium on ceramics in medicine, Turku (1994), Vol. 7, p. 3
[27] Hench, L.L., J. Am. Ceram. Soc. 74, 1487 (1991)
[28] Blenk, B.A., Bromer, H., Deutscher, K., Med. Orthop. Tech. 95, 144 (1975)
[29] K. de Groot, Bioceramics of calcium phosphate (CRC Press, Boca Raton, FL, 1983), Vol. 1
[30] T. Kokubo, H. Hushitani, S. Sakka, J. Biomed. Mater. Res. 721 (1990)
[31] International Centre for Diffraction Data (JCPDS, 2002), 2.3
[32] G. La Torre, L.L. Hench, Handbook: Characterization Techniques for the Solid-Solution Interface, edited by J.H. Adair, J.A. Casey, American Ceramic Society, Wester-ville, OH, 35 (1993)
[33] Kontonasaki, E., Zorba, T., Papadopoulou, L., Pavlidou, E., Chatzistavrou, X., Paraskevopolos, K., Koidis, P., Hydroxy. Cryst. Res. Technol. 37, 1165 (2002)
[34] B. Smith, A systematic Approach (CRC Pres, Florida, 1999)
[35] Farmer, V.C., Mineral. Soc. 4, 539 (1974)
[36] Rehman, I., Bonfield, W., J. Mater. Sci. Mater. Med. 8, 1 (1997)
[37] Rehman, I., Knowles, J.C., Bonfield, W., J. Biomed. Res. 41, 162 (1998)


Analysis of in vitro reaction layers formed on 48S4 glass for applications in biomaterial field

  • M. Mami (a1) (a2), H. Oudadesse (a1), R. Dorbez-Sridi (a2), E. Dietrich (a1) and J. Rocherullé (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed