Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T15:01:55.269Z Has data issue: false hasContentIssue false

Synthesis and transport properties of ZnO nanorods and nanoparticles assemblies

Published online by Cambridge University Press:  31 August 2007

J. Carrey*
Affiliation:
Laboratoire de Physique et Chimie des Nano-objects, INSA Toulouse, 135 avenue Rangueil, 31077 Toulouse Cedex 4, France
M. L. Kahn
Affiliation:
Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
S. Sanchez
Affiliation:
Laboratoire de Physique et Chimie des Nano-objects, INSA Toulouse, 135 avenue Rangueil, 31077 Toulouse Cedex 4, France
B. Chaudret
Affiliation:
Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
M. Respaud
Affiliation:
Laboratoire de Physique et Chimie des Nano-objects, INSA Toulouse, 135 avenue Rangueil, 31077 Toulouse Cedex 4, France
Get access

Abstract

We report here on the elaboration and transport properties of assemblies of ZnO nanoparticles and nanorods synthesized by organometallic chemistry. Two different methods have been used to prepare the samples. The first one consists in the deposition of the nano-objects on the substrate (drop-casting method) whereas the second one consists in the direct synthesis of the nano-objects on the substrate (in situ method). All the samples were highly resistive in the dark. Conductivity of as-grown nanorods was light-sensitive whereas the one of as-grown nanoparticles was not. Annealing the nanoparticles at 200 °C increases their dark resistance and strongly decreases their resistance under light. We analyse the transient photoconductivity when the light is abruptly switched on and off. The increase of the current when the light is switched on is fast and follows a simple exponential function. Decrease of the current when the light is switched off is slower and can be described by a stretched exponential function for short times and by a power law at longer times. Our various experiments are discussed in the light of other experiments on ZnO nanorods and CdSe nanoparticles, and to available models describing transport in assemblies of semiconductor nanoparticles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Westermark, K., Rensmo, H., Siegbahn, H., Keis, K., Hagfeldt, A., Ojamae, L., Persson, P., J. Phys. Chem. B 106, 10108 (2002) CrossRef
Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H., Luo, L., Appl. Surf. Sci. 242, 212 (2005) CrossRef
Li, Q.H., Gao, T., Wang, Y.G., Wang, T.H., Appl. Phys. Lett. 86, 123117 (2005) CrossRef
Fan, Z., Wang, D., Chang, P.-C., Tseng, W.-Y., Lu, J.G., Appl. Phys. Lett. 85, 5923 (2004) CrossRef
Fan, Z., Lu, J.G., Appl. Phys. Lett. 86, 032111 (2005) CrossRef
Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292, 1897 (2001) CrossRef
Baruwati, B., Kumar, D.K., Manorama, S.V., Sens. Actuators B 119, 676 (2006) CrossRef
Jose, J., Khadar, M.A., Acta Mater. 49, 729 (2001) CrossRef
Baxter, J.B., Schmuttenmaer, C.A., J. Phys. Chem. B 110, 25229 (2006) CrossRef
Roest, A.L., Germeau, A., Kelly, J.J., Vanmaekelbergh, D., Allan, G., Meulenkamp, E.A., Chem. Phys. Chem. 4, 959 (2004) CrossRef
A.L. Roest, J.J. Kelly, D. Vanmaekelbergh, Appl. Phys. Lett. 83, 5530 (2003)
Germeau, A., Roest, A.L., Vanmaekelbergh, D., Allan, G., Delerue, C., Meulenkamp, E.A., Phys. Rev. Lett. 90, 097401 (2003) CrossRef
Noack, V., Weller, H., Eychmüller, A., Phys. Chem. Chem. Phys. 5, 384 (2003) CrossRef
Tjong, S.C., Liang, G.D., Mat. Chem. Phys. 100, 1 (2006) CrossRef
Lee, C.-Y., Haung, Y.-T., Su, W.-F., Lin, C.-F., Appl. Phys. Lett. 89, 231116 (2006) CrossRef
Morgan, N.Y., Leatherdale, C.A., Drndi, M. ae , M.V. Jarosz, M.A. Kastner, M. Bawendi, Phys. Rev. B 66, 075339 (2002) CrossRef
Drndi, M. ae , M.V. Jarosz, N.Y. Morgan, M.A. Kastner, M.G. Bawendi, J. Appl. Phys. 92, 7498 (2002) CrossRef
Drndi, M. ae , R. Markov, M.V. Jarosz, M.G. Bawendi, M.A. Kastner, N. Markovic, M. Tinkham, Appl. Phys. Lett. 83, 4008 (2003) CrossRef
Fischbein, M.D., Drndic, M., Appl. Phys. Lett. 86, 193106 (2005) CrossRef
Ginger, D.S., Greenham, N.C., J. Appl. Phys. 87, 1361 (2000) CrossRef
Kahn, M.L., Monge, M., Collière, V., Senocq, F., Maisonnat, A., Chaudret, B., Adv. Funct. Mat. 15, 458 (2005) CrossRef
M.L. Kahn, M. Monge, A. Maisonnat, B. Chaudret, French Patent CNRS, Fr 03-042825 (April 7th 2003), PCT/FR/04/00850 (April 6th 2004)
Monge, M., Kahn, M.L., Maisonnat, A., Chaudret, B., Angew. Chem. Int. Ed. 42, 5321 (2003) CrossRef
Kahn, M.L., Monge, M., Snoeck, E., Maisonnat, A., Chaudret, B., Small 1, 221 (2005) CrossRef
Li, Q.H., Wan, Q., Liang, Y.X., Wang, T.H., Appl. Phys. Lett. 84, 4556 (2004) CrossRef
Harnack, O., Pacholski, C., Weller, H., Yasuda, A., Wessels, J.M., Nanoletters 3, 1097 (2003) CrossRef
van Dicken, A., Meulenkamp, E.A., Vanmaekelbergh, D., Meijerink, A., J. Phys. Chem. B 104, 1715 (2000) CrossRef
Jarosz, M.V., Porter, V.J., Fisher, B.R., Kastner, M.A., Bawendi, M.G., Phys. Rev. B 70, 195327 (2004) CrossRef