Skip to main content Accessibility help
×
Home

The Study of the Antisaccade Performance and Contingent Negative Variation Characteristics in First-Episode and Chronic Schizophrenia Patients

  • Anna V. Kirenskaya (a1), Andrej A. Tkachenco (a1) and Vladimir Yu. Novototsky-Vlasov (a1)

Abstract

The study tested whether the antisaccade (AS) performance and Contingent Negative Variation (CNV) measures differed between the first-episode and chronic patients to provide the evidence of PFC progressive functional deterioration. Subjects included 15 first-episode and 20 chronic schizophrenic patients (with the duration of illness more than 5 years), and 21 control subjects. The first-episode and chronic patients had significantly elevated error percent (p < .05, effect size 1.10 and p < .001, effect size 1.25), increased AS latencies (p < .01, effect size 1.18 and p < .001, effect size 1.69), and increased latencies variability (p < .01, effect size 1.52 and p < .001, effect size 1.37) compared to controls. Chronic patients had marginally significant increase of the response latency (p = .086, effect size .78) and latency variability (p < .099, effect size .63) compared to first-episode ones. Results of CNV analysis revealed that chronic patients only exhibited robustly declined frontal CNV amplitude at Fz (p < .05, effect size .70), F3 (p < .05, effect size .88), and F4 (p < .05, effect size .71) sites compared to controls. The obtained results might be related to specific changes in prefrontal cortex function over the course of schizophrenia.

Copyright

Corresponding author

*Correspondence concerning this article should be addressed to Anna Kirenskaya. Federal State Budgetary Institution “V.Serbsky Federal Medical Research Centre for Psychiatry and Narcology” of the Ministry of Health of the Russian Federation. Kropotkinsky per. 23. 119992. Moscow (Russia). Phone: +74956374622. E-mail: neuro11@yandex.ru

Footnotes

Hide All
How to cite this article:

Kirenskaya, A. V., Tkachenco, A. A., & Novototsky-Vlasov, V. Yu. (2017). The study of the antisaccade performance and contingent negative variation characteristics in first-episode and chronic schizophrenia patients. The Spanish Journal of Psychology, 20. e55. Doi:10.1017/sjp.2017.40

Footnotes

References

Hide All
Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303321. https://doi.org/10.1111/j.2044-8295.1970.tb01248.x
Bachmann, S., Bottmer, C., Pantel, J., Amann, M., Essig, M., Schad, L. R., & Schröder, J. (2004). MRI-morphometric changes in first-episode schizophrenia patients at 14 months follow-up. Schizophrenia Research, 67, 301303. https://doi.org/10.1016/S0920-9964(03)00002-1
Broerse, A., Crawford, T. J., & den Boer, J. A. (2001). Parsing cognition in schizophrenia using saccadic eye movements: A selective overview. Neuropsychologia, 39, 742756. https://doi.org/10.1016/S0028-3932(00)00155-X
Brown, M. R., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. Journal of Neurophysiology, 98, 17511762. https://doi.org/10.1152/jn.00460.2007
Brunia, C. H. M. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101, 213242. https://doi.org/10.1016/S0001-6918(99)00006-2
Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. The American Journal of Psychiatry, 160, 22092215. https://doi.org/10.1176/appi.ajp.160.12.2209
Camchong, J., Dyckman, K. A., Austin, B. P., Clementz, B. A., & McDowell, J. E., (2008). Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives. Biological Psychiatry, 64, 10421050. https://doi.org/10.1016/j.biopsych.2008.06.015
Cordones, I., Gómez, C. M., & Escudero, M. (2013). Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm. PLoS One, 8, e63751. https://doi.org/10.1371/journal.pone.0063751
Crawford, T. J., Haeger, B., Kennard, C., Reveley, M. A., & Henderson, L. (1995). Saccadic abnormalities in psychotic patients. I. Neuroleptic-free psychotic patients. Psychological Medicine, 25, 461471. https://doi.org/10.1017/S0033291700033389
Curtis, C. E., & D’Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15, 409418. https://doi.org/10.1162/089892903321593126
Damilou, A., Apostolakis, S., Thrapsanioti, E., Theleritis, C., & Smyrnis, N. (2016). Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology, 53, 796805. https://doi.org/10.1111/psyp.12630
DeLisi, L. E. (2008). The concept of progressive brain change in schizophrenia: Implications for understanding schizophrenia. Schizophrenia Bulletin, 34, 312321, https://doi.org/10.1093/schbul/sbm164
DeLisi, L. E., Sakuma, M., Tew, W., Kushner, M., Hoff, A. L., & Grimson, R. (1997). Schizophrenia as a chronic active brain process: A study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Research: Neuroimaging, 74, 129140. https://doi.org/10.1016/S0925-4927(97)00012-7
Doricchi, F., Perani, D., Incoccia, C., Grassi, F., Cappa, S. F., Bettinardi, V., … Fazio, F. (1997). Neural control of fast-regular saccades and antisaccades: An investigation using positron emission tomography. Experimental Brain Research, 116, 5062. https://doi.org/10.1007/PL00005744
Eisenberg, D. P., & Berman, K. F. (2010). Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology, 35, 258277. https://doi.org/10.1038/npp.2009.111
Ettinger, U., Kumari, V., Chitnis, X. A., Corr, P. J., Crawford, T. J., Fannon, D. G., … Sharma, T. (2004). Volumetric neural correlates of antisaccade eye movements in first-episode psychosis. The American Journal of Psychiatry, 61, 19181921. https://doi.org/10.1176/ajp.161.10.1918
Evdokimidis, I., Smyrnis, N., Constantinidis, T. S., Gourtzelidis, P., & Papageorgiou, C. (2001). Frontal-parietal activation differences observed before the execution of remembered saccades: An event-related potentials study. Cognitive Brain Research, 12, 8999. https://doi.org/10.1016/S0926-6410(01)00037-4
Everling, S., Krappmann, P., & Flohr, H. (1997). Cortical potentials preceding pro- and antisaccades in man. Electroencephalography and Clinical Neurophysiology, 102, 356362. https://doi.org/10.1016/S0013-4694(96)96569-4
Ford, K. A., Goltz, H. C., Brown, M. R. G., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94, 429440. https://doi.org/10.1152/jn.00471.2004
Fukushima, J., Morita, N., Fukushima, K., Chiba, T., Tanaka, S., & Yamashita, I. (1990). Voluntary control of saccadic eye movements in patients with schizophrenic and affective disorders. Journal of Psychiatric Research, 24, 924. https://doi.org/10.1016/0022-3956(90)90021-H
Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in Rhesus monkeys performing a delayed antisaccade task. Nature, 365, 753756. https://doi.org/10.1038/365753a0
Gale, H. J., & Holzman, P. S. (2000). A new look at reaction time in schizophrenia. Schizophrenia Research, 46, 149165. https://doi.org/10.1016/S0920-9964(00)00006-2
Gómez, C. M., & Flores, A. (2011). A neurophysiological evaluation of a cognitive cycle in humans. Neuroscience & Biobehavioral Review, 35, 452461. https://doi.org/10.1016/j.neubiorev.2010.05.005
Gomez, C. M., Marco, J., & Grau, C. (2003). Visuo-motor cortical network of the contingent negative variation. NeuroImage, 20, 216226. https://doi.org/10.1016/S1053-8119(03)00295-7
Gur, R. E., Cowell, P., Turetsky, B. I., Gallacher, F., Cannon, T., Bilker, W., & Gur, R. C. (1998). A follow-up magnetic resonance imaging study of schizophrenia: Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Archives of General Psychiatry, 55, 145152. https://doi.org/10.1001/archpsyc.55.2.145
Ho, B. C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcomes: A longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585594. https://doi.org/10.1001/archpsyc.60.6.585
Hulshoff Pol, H. E., & Kahn, R. S. (2008). What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia Bulletin, 34, 354366. https://doi.org/10.1093/schbul/sbm168
Hutton, S. B., Crawford, T. J., Puri, B. K., Duncan, L. J., Chapman, M., Kennard, C., … Joyce, E. M. (1998). Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychological Medicine, 28, 685692. https://doi.org/10.1017/S0033291798006722
Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302313. https://doi.org/10.1111/j.1469-8986.2006.00403.x
Jansma, J. M., Ramsey, N. F., van der Wee, N. J. A., & Kahn, R. S. (2004). Working memory capacity in schizophrenia: A parametric fMRI study. Schizophrenia Research, 68, 159171. https://doi.org/10.1016/S0920-9964(03)00127-0
Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in nonhuman primates. Brain and Cognition, 68, 271283. https://doi.org/10.1016/j.bandc.2008.08.017
Kang, S. S., Dionisio, D. P., & Sponheim, S. R. (2011). Abnormal mechanisms of antisaccade generation in schizophrenia patients and unaffected biological relatives of schizophrenia patients. Psychophysiology, 48, 350361. https://doi.org/10.1111/j.1469-8986.2010.01074.x
Karoumi, B., Ventre-Dominey, J., Vighetto, A., Dalery, J., & d’Amato, T. (1998). Saccadic eye movements in schizophrenic patients. Psychiatry Research, 77, 919. https://doi.org/10.1016/S0165-1781(97)00126-1
Kirenskaya, A. V., Kamenskov, M. Y., Myamlin, V. V., Novototsky-Vlasov, V. Y., & Tkachenko, A. A. (2013). The antisaccade task performance deficit and specific CNV abnormalities in patients with stereotyped paraphilia and schizophrenia. Journal of Forensic Sciences, 58, 12191226. https://doi.org/10.1111/1556-4029.12241
Kirenskaya, A. V., Myamlin, V. V., Novototsky-Vlasov, V. Y., Pletnikov, M. V., & Kozlovskaya, I. B. (2011). The contingent negative variation laterality and dynamics in antisaccade task in normal and unmedicated schizophrenic subjects. The Spanish Journal of Psychology, 14, 869883. https://doi.org/10.5209/rev_SJOP.2011.v14.n2.34
Klein, C., Heinks, T., Andresen, B., Berg, P., & Moritz, S. (2000). Impaired modulation of the saccadic contingent negative variation preceeding antisaccades in schizophrenia. Biological Psychiatry, 47, 978990. https://doi.org/10.1016/S0006-3223(00)00234-1
Levy, D. L., Mendell, N. R., & Holzman, P. S. (2004). The antisaccade task and neuropsychological tests of prefrontal cortical integrity in schizophrenia: Empirical findings and interpretative considerations. World Psychiatry, 3, 3240.
Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophrenia Research, 60, 285298. https://doi.org/10.1016/S0920-9964(02)00294-3
Mathalon, D. H., Sullivan, E. V., Lim, K. O., & Pfefferbaum, A. (2001). Progressive brain volume changes and the clinical course of schizophrenia in men: A longitudinal magnetic resonance study. Archives of General Psychiatry, 58, 148157. https://doi.org/10.1001/archpsyc.58.2.148
McDowell, J. E., Brown, G. G., Paulus, M., Martinez, A., Stewart, S. E., Dubowitz, D. J., & Braff, D. L. (2002). Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biological Psychiatry, 51, 216223. https://doi.org/10.1016/S0006-3223(01)01204-5
McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68, 255–70. https://doi.org/10.1016/j.bandc.2008.08.016
McDowell, J. E., Myles-Worsley, M., Coon, H., Byerley, W., & Clementz, B. A. (1999). Measuring liability for schizophrenia using optimized antisaccade stimulus parameters. Psychophysiology, 36, 138141. https://doi.org/10.1017/S0048577299980836
Novototsky-Vlasov, V. Y., Garakh, J. V., & Kovalev, V. P. (2007). A method for repetitive artifact suppression in multichannel EEG recordings. Human Physiology, 33, 231235. https://doi.org/10.1134/S0362119707020156
O’Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedingof the National Academy of Science of the United States of America, 92, 925929. https://doi.org/10.1073/pnas.92.3.925
Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E., & Lawrie, S. M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry, 70, 8896. https://doi.org/10.1016/j.biopsych.2011.01.032
Richards, J. E. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40, 878894. https://doi.org/10.1111/1469-8986.00106
Ruchkin, D. S., Sutton, S., Mahaffey, D., & Glaser, J. (1986). Terminal CNV in the absence of motor response. Electroencephalography and Clinical Neurophysiology, 63, 445463. https://doi.org/10.1016/0013-4694(86)90127-6
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64, 521529. http://dx.doi.org/10.1001/archpsyc.64.5.521
Schall, J. D. (2002). The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society B, 357, 10731082. https://doi.org/10.1098/rstb.2002.1098
Sereno, A. B., & Holzman, P. S. (1995). Antisaccades and smooth pursuit eye movements in schizophrenia. Biological Psychiatry, 37, 394401. https://doi.org/10.1016/0006-3223(94)00127-O
Slavutskaya, M. V., Kirenskaya, A. V., Novototskii-Vlasov, V. Yu., Shul’govskii, V. V., & Kozlovskaya, I. B. (2005). Slow cortical potentials preceding visually guided saccades in schizophrenics. Human Physiology, 31, 545553. https://doi.org/10.1007/s10747-005-0095-z
Smyrnis, N., Karantinos, T., Malogiannis, I., Theleritis, C., Mantas, A., Stefanis, N. C., … Evdokimidis, I. (2009). Larger variability of saccadic reaction times in schizophrenia patients. Psychiatry Research, 168, 129136. https://doi.org/10.1016/j.psychres.2008.04.015
Stirling, J., Hellewell, J., Blakey, A., & Deakin, W. (2006). Thought disorder in schizophrenia is associated with both executive dysfunction and circumscribed impairments in semantic function. Psychological Medicine, 36, 475484. https://doi.org/10.1017/S0033291705006884
Thermenos, H. W., Goldstein, J. M., Buka, S. L., Poldrack, R. A., Koch, J. K., Tsuang, M. T., & Seidman, L. J. (2005). The effect of working memory performance on functional MRI in schizophrenia. Schizophrenia Research, 74, 179194. https://doi.org/10.1016/j.schres.2004.07.021
Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2006). Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures. Schizophrenia Bulletin, 33, 6994. https://doi.org/10.1093/schbul/sbl060
Weinberger, D. R., Egan, M. F., Bertolino, A., Callicott, J. H., Mattay, V. S., Lipska, B. K., … Goldberg, T. E. (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry, 50, 825844. https://doi.org/10.1016/S0006-3223(01)01252-5
Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H., & Weir, B. S. (2002). Truncated product method for combining p-values. Genetic Epidemiology, 22, 170185. https://doi.org/10.1002/gepi.0042

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed