Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T16:12:31.128Z Has data issue: false hasContentIssue false

Simulation of the filtering role of habituation to stimuli

Published online by Cambridge University Press:  10 April 2014

Lola Alonso
Affiliation:
Universidad Autónoma de Madrid
Rafael Moreno
Affiliation:
Universidad de Sevilla
Manuel Vázquez
Affiliation:
Universidad Autónoma de Madrid
José Santacreu*
Affiliation:
Universidad Autónoma de Madrid
*
Correspondence concerning this article should be addressed to José Santacreu, Departamento de Psicología de la Salud, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid (Spain). E-mail: jose.santacreu@uam.es

Abstract

In the context of a medium-term study designed to integrate the simulation of different types and processes of learning—such as classical, operant, and some cognitive types—one must start with other more elementary ones that are facilitators of the more complex types and processes. Of special interest is habituation, owing to the filtering out of irrelevant stimuli, which means that the simulated agent does not have to respond to them. This paper presents two difference functions constructed to computationally simulate the characteristics that define habituation. The behavior of these functions is described, as are differences arising from stimulus intensity and interstimulus intervals. Results are compared with existing empirical data.

En el contexto de un proyecto a medio plazo que pretende integrar la simulación de diferentes tipos y procesos de aprendizaje —como el clásico, operante y algunos de tipo cognoscitivo— es fundamental comenzar por otros más elementales facilitadores de los más complejos. Interesa especialmente la habituación debido al filtraje que realiza de los estímulos irrelevantes, evitando al agente simulado responder a ellos. El presente trabajo presenta dos funciones en diferencias construidas para simular computacionalmente las características definitorias de la habituación. Se describe el comportamiento de tales funciones y sus variaciones según la intensidad de los estímulos presentados y el intervalo entre ellos, evaluándose su ajuste a datos empíricos existentes.

Type
Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Church, R.M. (1997). Quantitative models of animal learning and cognition. Journal of Experimental Psychology: Animal Behavior Processes, 23, 379389.Google ScholarPubMed
Ewert, J.P. (1984). Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In Venegas, H. (Ed.), Comparative neurology of the optic tectum. (pp. 246416). New York: Plenum Press.Google Scholar
Groves, P.M., & Thompson, R.F. (1970). Habituation: A dual-process theory. Psychological Review, 77, 419450.CrossRefGoogle ScholarPubMed
Innis, N. K., & Staddon, J.E.R. (1989). What should comparative psychology compare? International Journal of Comparative Psychology, 2, 145156.CrossRefGoogle Scholar
Rankin, C.H., & Broster, B.S. (1992). Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behavioral Neuroscience, 106, 239249.CrossRefGoogle ScholarPubMed
Sokolov, E.N. (1963). Higher nervous functions: The orienting reflex. Annual Review of Physiology, 25, 545580.CrossRefGoogle ScholarPubMed
Staddon, J.E.R. (2002). The theoretical analysis of behavior. Cambridge, MA: MIT Press.Google Scholar
Staddon, J.E.R., Chelaru, I.M., & Higa, J.J. (2002). Habituation, memory and the brain: The dynamics of interval timing. Behavioural Processes, 57, 7188.CrossRefGoogle ScholarPubMed
Staddon, J.E.R., & Higa, J.J. (1996). Multiple time scales in simple habituation. Psychological Review, 103, 720733.CrossRefGoogle ScholarPubMed
Staddon, J.E.R., & Higa, J.J. (1999) Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71, 215251.CrossRefGoogle ScholarPubMed
Stanley, J.C. (1976). Computer simulation of a model of habituation. Nature, 261, 146148.CrossRefGoogle Scholar
Sutton, R.S., & Barto, A.G. (1990). Time-derivative models of Pavlovian reinforcement. In Gabriel, M. & Moore, J. (Eds.), Learning and computational neuroscience: Foundations of adaptive networks (pp. 497537). Cambridge, MA: MIT Press.Google Scholar
Thompson, R.F., & Spencer, W.A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 1643.CrossRefGoogle Scholar
Van Gelder, T., & Port, R.F. (1995). It's about time: An overview of the dynamical approach to cognition. In Port, R.F. & Van Gelder, T. (Eds.), Mind as motion (pp. 143). Cambridge, MA: MIT Press.Google Scholar
Wang, D.L. (1994). A neural model of synaptic plasticity underlying short-term and long-term habituation. Adaptive Behavior, 2, 111129.CrossRefGoogle Scholar
Wang, D., & Arbib, M.A. (1992). Modeling the dishabituation hierarchy. The role of the primordial hippocampus. Biological Cybernetics, 67, 535544.CrossRefGoogle ScholarPubMed
Wang, D., & Hsu, C. (1990). SLONN: A simulation language for modeling of neural networks. Simulation, 55, 6983.CrossRefGoogle Scholar