Skip to main content Accessibility help

The Scree Test and the Number of Factors: a Dynamic Graphics Approach

  • Rubén Daniel Ledesma (a1), Pedro Valero-Mora (a2) and Guillermo Macbeth (a3)


Exploratory Factor Analysis and Principal Component Analysis are two data analysis methods that are commonly used in psychological research. When applying these techniques, it is important to determine how many factors to retain. This decision is sometimes based on a visual inspection of the Scree plot. However, the Scree plot may at times be ambiguous and open to interpretation. This paper aims to explore a number of graphical and computational improvements to the Scree plot in order to make it more valid and informative. These enhancements are based on dynamic and interactive data visualization tools, and range from adding Parallel Analysis results to "linking" the Scree plot with other graphics, such as factor-loadings plots. To illustrate our proposed improvements, we introduce and describe an example based on real data on which a principal component analysis is appropriate. We hope to provide better graphical tools to help researchers determine the number of factors to retain.


Corresponding author

*Correspondence concerning this article should be addressed to Ruben D. Ledesma. Universidad Nacional de Mar del Plata & Consejo Nacional de Investigaciones Científicas y Técnicas. Rio Negro, 3922. 7600. Mar del Plata (Argentina). E-mail.


Hide All
Beauducel, A. (2001). Problems with parallel analysis in data sets with oblique simple structure. Methods of Psychological Research Online, 6, 141157.
Becker, R. A., Cleveland, W. S., & Wilks, A. R. (1987). Dynamic graphics for data analysis. Statistical Science, 2, 355383.
Buja, A., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27, 509540.
Cattell, R. B. (1966). The Scree test for the number of factors. Multivariate Behavioral Research, 1, 245276.
Cattell, R. B., & Vogelman, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors. Multivariate Behavioral Research, 12, 289325.
Cleveland, W. S., & McGill, M. E. (1988). Dynamic graphics for statistics. Belmont, CA: Wadsworth.
Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10, 7.
Cota, A. A., Longman, R. S., Holden, R. R., Fekken, G. C., & Xinaris, S. (1993). Interpolating 95th percentile eigenvalues from random data: An empirical example. Educational & Psychological Measurement, 53, 585596.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272299.
Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, 377393.
Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191205.
Hong, S., Mitchell, S. K., & Harshman, R. A. (2006). Bootstrap Scree Tests: A Monte Carlo simulation and applications to published data. British Journal of Mathematical and Statistical Psychology, 59, 3557.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179185.
Horn, J. L., & Engstrom, R. (1979). Cattell's Scree Test in relation to Bartlett's chi-square test and other observations on the number of factors problem. Multivariate Behavioral Research, 14, 283300.
Humphreys, L. G., & Montanelli, R. G. (1975). An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research, 10, 193206.
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141151.
Keeling, K. B. (2000). A regression equation for determining the dimensionality of data. Multivariate Behavioral Research, 35, 457468.
Lautenschlager, G. J. (1989). A comparison of alternatives to conducting Monte Carlo analyses for determining parallel analysis criteria. Multivariate Behavioral Research, 24, 365395.
Lautenschlager, G. J., Lance, C. E., & Flaherty, V. L. (1989). Parallel analysis criteria: Revised regression equations for estimating the latent roots of random data correlation matrices. Educational and Psychological Measurement, 49, 339345.
Ledesma, R., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out Parallel Analysis. Practical Assessment, Research & Evaluation, 12, 1.
Ledesma, R. D., Molina, J. G., Young, F. W., & Valero-Mora, P. M. (2007). Desarrollo de técnicas de visualización múltiple en el programa ViSta: Ejemplo de aplicación al Análisis de Componentes Principales [Developing multiple-visualization techniques in ViSta. The case of Principal Component Analysis]. Psicothema, 19, 497505.
Longman, R. S., Cota, A. A., Holden, R. R., & Fekken, G. C. (1989). A regression equation for the parallel analysis criterion in principal components analysis: Mean and 95th percentile eigenvalues. Multivariate Behavioral Research, 24, 5969.
Molina, J. G., Ledesma, R. D, Valero-Mora, P., & Young, F. W. (2005). A video tour through ViSta 6.4, a visual statistical system based on Lisp-Stat. Journal of Statistical Software 13, 113.
Raîche, G., Walls, T. A., Magis, D., Riopel, M., & Blais, J. G (2013). Non-graphical solutions for Cattell’s scree test. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9, 2329.
Taubman-Ben-Ari, O., Mikulincer, M., & Gillath, O. (2004). The multidimensional driving style inventory-scale construct and validation. Accident Analysis and Prevention, 36, 323332.
Tierney, L. (1990). Lisp-stat an object-oriented environment for statistical computing and dynamic graphics. New York, NY: John Wiley & Sons.
Turner, N. E. (1998). The effect of common variance and structure pattern on random data eigenvalues: Implications for the accuracy of parallel analysis. Educational and Psychological Measurement, 58, 541568.
Valero-Mora, P., Ledesma, R. D, & Friendly, M. (2012). The history of ViSta: The visual statistics system. Wiley Interdisciplinary Reviews: Computational Statistics, 4, 295306.
Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321327.
Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In Goffin, R. D., & Helmes, E. (Eds.), Problems and solutions in human assessment: Honoring Douglas N. Jackson at seventy (pp. 4171). Boston, MA: Kluwer.
Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some further observations. Multivariate Behavioral Research, 25, 97114.
Young, F. W. (1996). ViSta: Developing statistical objects. [Memorandum]. Chapel Hill, NC: Thurstone Psychometric Lab, University of North Carolina.
Young, F. W., Valero-Mora, P., Faldowski, R., & Bann, C. M. (2003). Gossip: The architecture of spreadplots. Journal of Computational and Graphical Statistics, 12, 80100.
Young, F. W., Valero-Mora, P., & Friendly, M. (2006). Visual statistic: Seeing data with dynamic interactive graphics. Hoboken, NJ: John Wiley and Sons.
Yu, C. H., Popp, S. O., DiGangi, S., & Jannasch-Pennell, A. (2007). Assessing unidimensionality: A comparison of Rasch Modeling, Parallel Analysis, and TETRAD. Practical Assessment Research & Evaluation, 12, 14.
Zwick, W. R., & Velicer, W. F. (1982). Factors influencing four rules for determining the number of components to retain. Multivariate Behavioral Research, 17, 253269.
Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432442.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed