Skip to main content Accessibility help
×
Home

Reliability and Validity of Nonsymbolic and Symbolic Comparison Tasks in School-Aged Children

  • Danilka Castro (a1), Nancy Estévez (a2), David Gómez (a1) and Pablo Ricardo Dartnell (a1)

Abstract

Basic numerical processing has been regularly assessed using numerical nonsymbolic and symbolic comparison tasks. It has been assumed that these tasks index similar underlying processes. However, the evidence concerning the reliability and convergent validity across different versions of these tasks is inconclusive. We explored the reliability and convergent validity between two numerical comparison tasks (nonsymbolic vs. symbolic) in school-aged children. The relations between performance in both tasks and mental arithmetic were described and a developmental trajectories’ analysis was also conducted. The influence of verbal and visuospatial working memory processes and age was controlled for in the analyses. Results show significant reliability (p < .001) between Block 1 and 2 for nonsymbolic task (global adjusted RT (adjRT): r = .78, global efficiency measures (EMs): r = .74) and, for symbolic task (adjRT: r = .86, EMs: r = .86). Also, significant convergent validity between tasks (p < .001) for both adjRT (r = .71) and EMs (r = .70) were found after controlling for working memory and age. Finally, it was found the relationship between nonsymbolic and symbolic efficiencies varies across the sample’s age range. Overall, these findings suggest both tasks index the same underlying cognitive architecture and are appropriate to explore the Approximate Number System (ANS) characteristics. The evidence supports the central role of ANS in arithmetic efficiency and suggests there are differences across the age range assessed, concerning the extent to which efficiency in nonsymbolic and symbolic tasks reflects ANS acuity.

Copyright

Corresponding author

*Correspondence concerning this article should be addressed to Danilka Castro Cañizares. Área de Investigación de Neurociencia y Cognición del Centro de Investigación Avanzada en Educación. Santiago (Chile). E-mail: danilka.castro@ciae.uchile.cl

Footnotes

Hide All

Funding from PIA-CONICYT Basal Funds for Centers of Excellence Project FB0003 is gratefully acknowledged.

How to cite this article:

Castro, D., Estévez, N., Gómez, D., & Dartnell, P. R. (2017). Reliability and validity of nonsymbolic and symbolic comparison tasks in school-aged children. The Spanish Journal of Psychology, 20. e75. Doi:10.1017/sjp.2017.68

Footnotes

References

Hide All
Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133137. https://doi.org/10.1016/j.lindif.2010.09.013
American Educational Research Association, American Psychological Association y National Council on Measurement in Education (1999). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.
Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W. S., Swigart, A. G., & Menon, V. (2013). Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 23052317. https://doi.org/10.1016/j.neuropsychologia.2013.06.031
Castro, D., Estévez, N., & Pérez, O. (2011). Typical development of quantity comparison in school-aged children. The Spanish Journal of Psychology, 14(1), 5061. https://doi.org/10.5209/rev_SJOP.2011.v14.n1.4
Castro, D., Reigosa, V., & González, E. (2012). Non-symbolic and symbolic number magnitude processing in children with developmental dyscalculia. The Spanish Journal of Psychology, 15(3), 952966. https://doi.org/10.5209/rev_SJOP.2012.v15.n3.39387
Clayton, S., & Gilmore, C. (2015). Inhibition in dot comparison tasks. ZDM: Mathematics Education, 47, 759770. https://doi.org/10.1007/s11858-014-0655-2
Cohen, R. J., & Swerdlik, M. (2009). Psychological testing and assessment:An introduction to tests and measurement (7 th ed.). New York, NY: McGraw-Hill.
Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 6368. https://doi.org/10.1016/j.tine.2013.12.001
De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278292. https://doi.org/10.1016/j.jecp.2010.09.003
De Smedt, B., Taylor, J., Archibald, L., & Ansari, D. (2010). How is phonological processing related to individual differences in children´s arithmetic skills. Developmental Sciences, 13, 508520. https://doi.org/10.1111/j.1467-7687.2009.00897.x
Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neurosciences, 5, 390407. https://doi.org/10.1162/jocn.1993.5.4.390
Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82, 6481. https://doi.org/10.1348/2044-8279.002002
Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS) – a research review. Frontiers in Psychology, 6, 295. https://doi.org/10.3389/fpsyg.2015.00295
Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136148. https://doi.org/10.1111/desc.12013
Gilmore, C., Attridge, N., De Smedt, B., & Inglis, M. (2014). Measuring the approximate number system in children: exploring the relationships among different tasks. Learning and Individual Differences, 29, 5058. https://doi.org/10.1016/j.lindif.2013.10.004
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., ... Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The Quarterly Journal of Experimental Psychology, 64(11), 20992109. https://doi.org/10.1080/17470218.2011.574710
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109, 1111611120. https://doi.org/10.1073/pnas.1200196109
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in nonverbal number acuity correlate with maths achievement. Nature, 455, 665668. https://doi.org/10.1038/nature07246
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 1729. https://doi.org/10.1016/j.jecp.2008.04.001
Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147155. https://doi.org/10.1016/j.actpsy.2013.11.009
Iuculano, T., Tang, J., Hall, C. W. B., & Butterworth, B. (2008). Core information processing deficits in Developmental Dyscalculia and low numeracy. Developmental Science, 11(5), 669680. https://doi.org/10.1111/j.1467-7687.2008.00716.x
Izard, V., & Dehaene, S. (2007). Calibrating the mental number line. Cognition, 106(3), 12211247. https://doi.org/10.1016/j.cognition.2007.06.004
Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103, 516531. https://doi.org/10.1016/j.jecp.2009.03.009
Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), 546565. https://doi.org/10.1016/j.jecp.2008.12.006
LeFevre, J., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuk, S., & Smith-Chant, B. (2013). The role of executive attention in the acquisition of mathematical skills for children in grades 2 through 4. Journal of Experimental Child Psychology, 114(2), 243261. https://doi.org/10.1016/j.jecp.2012.10.005
Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 12921300. https://doi.org/10.1111/j.1467-7687.2011.01080.x
Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics, 24, 583591.
Maloney, E. A., Risko, E. F., Preston, F., Ansari, D., & Fugelsang, J. (2010). Challenging the reliability and validity of cognitive measures: The case of the numerical distance effect. Acta Psychologica, 134, 154161. https://doi.org/10.1016/j.actpsy.2010.01.006
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6, e23749. https://doi.org/10.1371/journal.pone.0023749
Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin , 27, 272277. https://doi.org/10.1093/oxfordjournals.bmb.a070866
Mussolin, C., Mejias, S., & Noël, M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without Dyscalculia. Cognition, 115, 1025. https://doi.org/10.1016/j.cognition.2009.10.006
Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 5057. https://doi.org/10.1016/j.actpsy.2012.02.008
Raven, J. C., Court, J., & Raven, J. (1992). Manual for Raven’s progressive matrices and vocabulary scales. Oxford, UK: Oxford Psychologists Press.
Reigosa-Crespo, V., González-Alemañy, E., León, T., Torres, R., Mosquera, R., & Valdés-Sosa, M. (2013). Numerical capacities as domain-specific predictors beyond early mathematics learning: A longitudinal study. PLoS ONE, 8(11), e79711. https://doi.org/10.1371/journal.pone.0079711
Rousselle, L., & Noël, M-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102(3), 361395. https://doi.org/10.1016/j.cognition.2006.01.005
Sasanguie, D., Defever, E., van den Bussche, E., & Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136, 7380. https://doi.org/10.1016/j.actpsy.2010.10.004
Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418431. https://doi.org/10.1016/j.jecp.2012.10.012
Sattler, J. (1982). Assessment of children’s intelligence and special abilities. Boston, MA: Allyn & Bacon.
Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4), 821837. https://doi.org/10.1037/a0025114
Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 26742688. https://doi.org/10.1016/j.cortex.2013.06.007
Waechter, S., Stolz, J. A., & Besner, D. (2010). Visual word recognition: On the reliability of repetition priming. Visual Cognition, 18(4), 537558. https://doi.org/10.1080/13506280902868603
Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10, 130137. https://doi.org/10.1111/1467-9280.00120
Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of learning disabilities, 50(1), 4961. https://doi.org/10.1177/0022219415588851

Keywords

Reliability and Validity of Nonsymbolic and Symbolic Comparison Tasks in School-Aged Children

  • Danilka Castro (a1), Nancy Estévez (a2), David Gómez (a1) and Pablo Ricardo Dartnell (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed